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ABSTRACT

Efficient management of RDF data is an important factor in real-
izing the Semantic Web vision. Performance and scalability issues
are becoming increasingly pressing as Semantic Web technology
is applied to real-world applications. In this paper, we examine the
reasons why current data management solutions for RDF data scale
poorly, and explore the fundamental scalability limitations of these
approaches. We review the state of the art for improving perfor-
mance for RDF databases and consider a recent suggestion, “prop-
erty tables.” We then discuss practically and empirically why this
solution has undesirable features. As an improvement, we propose
an alternative solution: vertically partitioning the RDF data. We
compare the performance of vertical partitioning with prior art on
queries generated by a Web-based RDF browser over a large-scale
(more than 50 million triples) catalog of library data. Our results
show that a vertical partitioned schema achieves similar perfor-
mance to the property table technique while being much simpler
to design. Further, if a column-oriented DBMS (a database archi-
tected specially for the vertically partitioned case) is used instead
of a row-oriented DBMS, another order of magnitude performance
improvement is observed, with query times dropping from minutes
to several seconds.

1. INTRODUCTION

The Semantic Web is an effort by the W3C [8] to enable in-
tegration and sharing of data across different applications and or-
ganizations. Though called the Semantic Web, the W3C envisions
something closer to a global database than to the existing World-
Wide Web. In the W3C vision, users of the Semantic Web should
be able to issue structured queries over all of the data on the Inter-
net, and receive correct and well-formed answers to those queries
from a variety of different data sources that may have information
relevant to the query. Database researchers will immediately recog-
nize that building the Semantic Web requires surmounting many of
the semantic heterogeneity problems faced by the database commu-
nity over the years. In fact — as in many database research efforts —
the W3C has proposed schema matching, ontologies, and schema
repositories for managing semantic heterogeneity.
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One area in which the Semantic Web community differs from
the relational database community is in its choice of data model.
The Semantic Web data model, called the “Resource Description
Framework,” [9] or RDF, represents data as statements about re-
sources using a graph connecting resource nodes and their property
values with labeled arcs representing properties. Syntactically, this
graph can be represented using XML syntax (RDF/XML). This is
typically the format for RDF data exchange; however, structurally,
the graph can be parsed into a series of triples, each representing a
statement of the form < sub ject, property, object >, which is the
notation we follow in this paper. These triples can then be stored
in a relational database with a three-column schema. For example,
to represent the fact that Serge Abiteboul, Rick Hull, and Victor
Vianu wrote a book called “Foundations of Databases” we would
use seven triples':

personl isNamed °‘‘Serge Abiteboul’’

person2 isNamed ‘‘Rick Hull’’

person3 isNamed ‘‘Victor Vianu’’

bookl hasAuthor personl

bookl hasAuthor person2

book1l hasAuthor person3

bookl isTitled ‘‘Foundations of Databases’’

The commonly stated advantage of this approach is that it is very
general (almost any type of data can be expressed in this format
— it’s easy to shred both relational and XML databases into RDF
triples) and it’s easy to build tools that manipulate RDF. These tools
won’t be useful if different users describe objects differently, so the
Semantic Web community has developed a set of standards for ex-
pressing schemas (RDFS and OWL); these make it possible, for
example, to say that every book should have an author, or that the
property “isAuthor” is the same as the property “authored.”

This data representation, though flexible, has the potential for se-
rious performance issues, since there is only one single RDF table,
and almost all interesting queries involve many self-joins over this
table. For example, to find all of the authors of books whose title
contains the word “Transaction” it is necessary to perform the five-
way self-join query shown in Figure 1.

This query is potentially very slow to execute, since as the num-
ber of triples in the library collection scales, the RDF table may well
exceed the size of memory, and each of these filters and joins will
require a scan or index lookup. Real world queries involve many
more joins, which complicates selectivity estimation and query op-
timization, and limits the benefit of indices.

As a database researcher, it is tempting to dismiss RDF, as the

lIn practice, RDF uses Universal Resource Identifiers (URIs), which look like URLs
and often include sequences of numbers to make them unique. We use more readable
names in our examples in this paper.



SELECT p5.obj
FROM rdf AS pl, rdf AS p2, rdf AS p3,
rdf AS p4, rdf AS p5
WHERE pl.prop = ’title’ AND pl.obj \"{}= ’Transaction’
AND pl.subj = p2.subj AND p2.prop = ’type’
AND p2.0bj "book’ AND p3.prop "type’
AND p3.0bj ’auth’ AND p4.prop "hasAuth’
AND p4.subj = p2.subj AND p4.obj = p3.subj
AND p5.prop = ’isnamed’ AND p5.subj = p4.obj;

Figure 1: SQL over a triple-store for a query that finds all of the
authors of books whose title contains the word ‘“Transaction”.

data model seems to offer inherently limited performance for little
— or no — improvement in expressiveness or utility. Regardless of
one’s opinion of RDF, however, it appears to have a great deal of
momentum in the web community, with several international con-
ferences (ISWC, ESWC) each drawing more than 250 full paper
submissions and several hundred attendees, as well as enthusiastic
support from the W3C (and its founder, Tim Berners-Lee.) Further,
an increasing amount of data is becoming available on the Web in
RDF format, including the UniProt comprehensive catalog of pro-
tein sequence, function, and annotation data (created by joining the
information contained in Swiss-Prot, TTEMBL, and PIR) [6] and
Princeton University’s WordNet (a lexical database for the English
language) [7]. The online Semantic Web search engine Swoogle
[5] reports that it indexes 2,171,408 Semantic Web documents at
the time of the publication of this paper.

Hence, it is our goal in this paper to explore ways to improve
RDF query performance, since it appears that it will be an impor-
tant way for people to represent data on (or about) the web. We
focus on using a relational query processor to execute RDF queries,
as we (and several other research groups [21, 22, 26, 32]) feel that
this is likely to be the best performing approach. The gist of our
technique is based on a simple and familiar observation to propo-
nents of relational technology: just as with relations, RDF does not
have to be a proposal for physical storage — it is merely a logical
data model. RDF databases are free to store RDF data as they see
fit — including in ways that offer much better performance than ac-
tually storing collections of triples in memory or on disk.

We look at two different physical organization techniques for
RDF data. The first, called the property table technique, denormal-
izes RDF tables by physically storing them in a wider, flattened rep-
resentation more similar to traditional relational schemas. One way
to do this flattening, as suggested in [22] and [31], is to find sets of
properties that tend to be defined together; i.e., clusters of subjects
tend to have these properties defined. For example, “title,” “author,”
and “isbn” might all be properties that tend to be defined for sub-
jects that represent book entities. Thus a table containing subject as
the key and “title,” “author,” and “isbn” as the other attributes might
be created to store entities of type “book.” This flattened property
table representation will require many fewer joins to access, since
self-joins on the subject column can be eliminated. One can use
standard query rewriting techniques to translate queries over the
RDF triple-store to queries over the flattened representation.

There are several issues with this property table technique, in-

cluding:
NULLSs. Because not all properties will be defined for all subjects in
the subject cluster, wide tables will have (possibly many) NULLSs.
For very wide tables with many sparse attributes, the space over-
head of these NULLSs can potentially dominate the space of the data
itself.

Multi-valued Attributes. Multi-valued attributes (such as a book

with multiple titles in different languages) and many-to-many rela-
tionships (such as the book authorship relationship where a book
can have multiple authors and an author can write multiple books)
are somewhat awkward to express in a flattened representation. Anec-
dotally, many RDF datasets make heavy use of multi-valued at-
tributes, so this may be of more concern here than in other database
applications.

Proliferation of union clauses and joins. In the above example,
queries are simple if they can be isolated to querying a single prop-
erty table like the one described above. But if, for example, the
query does not restrict on property value, or if the value of the
property will be bound when the query is processed, all flattened
tables will have to be queried and the results combined with either
complex union clauses, or through joins.

To address these limitations, we propose a different physical or-
ganization technique for RDF data. We create a two-column table
for each unique property in the RDF dataset where the first column
contains subjects that define the property and the second column
contains the object values for those subjects. For the library exam-
ple, tables would be created for the “title,” “author,” “isbn,” etc.
properties, each table listing subject URIs with their corresponding
value for that property. Multi-valued subjects are thus represented
as multiple rows in the table with the same subject and different val-
ues. Although many joins are still required to answer queries over
multiple properties, each table is sorted by subject, so fast (linear)
merge joins can be used. Further, only those properties that are ac-
cessed by the query need to be read off disk (or from memory),
saving I/O time.

The above technique can be thought of as a fully vertically par-
titioned database on property value. Although vertically partition-
ing a database can be done in a normal DBMS, these databases
are not optimized for these narrow schemas (for example, the tu-
ple header dominates the size of the actual data resulting in table
scans taking 4-5 times as long as they need to), and there has been
a large amount of recent work on column-oriented databases [18,
19, 28, 30], which are DBMSs optimized for vertically partitioned
schemas.

In this paper, we compare the performance of different RDF stor-
age schemes on a real world RDF dataset. We use the Postgres open
source DBMS to show that both the property table and the ver-
tically partitioned approaches outperform the standard triple-store
approach by more than a factor of 2 (average query times go from
around 100 seconds to around 40 seconds) and have superior scal-
ing properties. We then show that one can get another order of mag-
nitude in performance improvement by using a column-oriented
DBMS since they are designed to perform well on vertically par-
titioned schemas (queries now run in an average of 3 seconds).

The main contributions of this paper are: an overview of the state
of the art for storing RDF data in databases, a proposal to verti-
cally partition RDF data as a simple way to improve RDF query
performance relative to the state of the art, a description of how
we extended a column-oriented database to implement the verti-
cal partitioning approach, and a performance evaluation of these
different proposals. Ultimately, the column-oriented DBMS is able
to obtain near-interactive performance (on non-trivial queries) over
real-world RDF datasets of many millions of records, something
that (to the best of our knowledge) no other RDF store has been
able to achieve.

The remainder of this paper is organized as follows. In Section
2 we discuss the state of the art of storing RDF data in relational
databases, with an extended look at the property table approach.
In Section 3, we discuss the vertically partitioned approach and
explain how this approach can be implemented inside a column-



oriented DBMS. In Section 4 we look at an additional optimization
to improve performance on RDF queries: materializing path expres-
sions in advance. In Section 5, we summarize the library benchmark
we use for evaluating the performance of an RDF database, and then
compare the performance of the different RDF storage approaches
in Section 6. Finally, we conclude in Section 7.

2. CURRENT STATE OF THE ART

In this section, we discuss the state of the art of storing RDF data
in relational databases, with an extended look at the property table
approach.

2.1 RDF In RDBMSs

Although there have been non-relational DBMS proposals for
storing RDF data [20], the majority of RDF data storage solutions
use relational DBMSs, such as Jena [32], Oracle[22], Sesame [21],
and 3store [26]. These solutions generally center around a giant
triples table, containing one row for each statement. For example,
the RDF triples table for a small library dataset is shown in Table
1(a).

Since URIs and literal values tend to be long strings (rather than
those shown in the simplified example in 1(a)), many RDF stores
choose not to store entire strings in the triples table; instead they
store shortened versions or keys. Oracle and Sesame map string
URIs to integer identifiers so the data is normalized into two tables,
one triples table using identifiers for each value, and one mapping
table that maps the identifiers to their corresponding strings. This
can be thought of as dictionary encoding the string data. 3store does
something similar, except the identifiers are created by applying a
hash function to each string. Jena prefers to just dictionary encode
the namespace prefixes in the URIs and only normalizes the partic-
ularly long strings into a separate table.

Each of the above listed RDF storage solutions implements a
multi-layered architecture, where RDF-specific functionality (for
example, query translation) is performed in a layer above the RDBMS
(which sits in the lowest layer). This removes any dependence on
the particular RDBMS used (though Sesame will take advantage of
specific features of an object relational DBMS such as Postgres to
use subtables to model class and property subsumption relations).
Queries are issued in an RDF-specific querying language (such as
SPARQL [11] or RDQL [10]), converted to SQL in the higher level
RDF layers, and then sent to the RDBMS which will optimize and
execute the SQL query over the triple-store.

For example, the SPARQL query that attempts to get the title of
the book(s) Joe Fox wrote in 2001:

SELECT ?title

FROM table

WHERE { ?book author ‘‘Fox, Joe’’
?book copyright ‘‘2001’’
?book title ?title }

would get converted into the SQL query shown in Table 1(b) run
over the data in Table 1(a).

Note that this simple query results in a three-way self-join over
the triples table (in fact, another join will generally be needed if the
strings are normalized into a separate table, as described above). If
the predicates are selective, this 3-way join is not expensive (assum-
ing the triples table is indexed — typically there will be indexes on
all three columns). However, the less selective the predicates, the
more problematic the joins become. As a result, both Jena and Ora-
cle propose changes to the schema to reduce the number of joins of
this type: property tables. We now examine these data structures in
more detail.

Subj. Prop. Obj. Property Table
ID1 type BookType Subj. Type Title copyright
ID1 title “XYZ” ID1 BookType | “XYZ” “2001”
ID1 author “Fox, Joe” 1D2 CDType “ABC” “1985”
ID1 copyright <2001~ 1D3 BookType | “MNP” NULL
D2 type CDType ID4 | DVDType | “DEF” NULL
D2 title “ABC” 1D5 CDType “GHI” “1995”
D2 artist “Orr, Tim” 1D6 BookType | NULL “2004”
ID2_| copyright ““1985”” Left-Over Triples
1D2 language French’ Subj. Prop. Obj.
ID3 type B:)okTyEe ID1 author “Fox, Joe”
D3 title _MNO” D2 | artist | “Orr, Tim™
1D3 language English D2 Tanguage “French”
D4 lype DVDType 1D3 language “English”
D4 title “DEF”
ID5 type CDType
D5 title “GHI” (c) Clustered Property Table Example
1ID5 copyright “1995”
e ooue s ] s okt
Subj. Title Author copyright
ID1 “XYZ” | “Fox, Joe” “2001”
(a) Some Example RDF Triples D3 “MNP” NULL NULL
1D6 NULL NULL “2004”
SELECT C.obj. Class: CDType
FROM TRIPLES AS A, Subj. Title Artist copyright
TRIPLES AS B, 1D2 “ABC” | “Orr, Tim” “1985”
TRIPLES AS C ID5 “GHI” NULL “1995”
LIRS Lnowrme
AND A.prop. = ‘copyright’ Subj. Prop. Obj.
AND A.obj. = ‘2001’ 1D2 language “French”
AND B.prop. = ‘author’ 1D3 language | “English”
AND B.obj. = ‘‘Fox, Joe’’ 1D4 type | DVDType
AND C.prop. = ‘title’ D4 title “DEF”

(b) Example SQL Query Over
RDF Triples Table From (a)

(d) Property-Class Table Example

Table 1: Some sample RDF data and possible property tables.

2.2 Property Tables

Researchers developing the Jena Semantic Web toolkit, Jena2
[31, 32], were the first to propose the use of property tables to speed
up queries over triple-stores. They proposed two types of property
tables. The first type, which we call a clustered property table, con-
tains clusters of properties that tend to be defined together. For ex-
ample, for the raw data in Table 1(a), type, title, and copyright date
tend to be defined as properties for similar subjects. Thus, a prop-
erty table containing these three properties as attributes along with
subject as the table key can be created, which stores the triples from
the original data whose property is one of these three attributes.
The resulting property table, along with the left-over triples that are
not stored in this property table, is shown in Table 1(c). Multiple
property tables with different clusters of properties may be created;
however, a key requirement for this type of property table is that a
particular property may only appear in at most one property table.

The second type of property table, termed a property-class table,
exploits the type property of subjects to cluster similar sets of sub-
jects together in the same table. Unlike the first type of property
table, a property may exist in multiple property-class tables. Table
1(d) shows two example property tables that may be created from
the same set of input data as Table 1(c). Jena2 found property-class
tables to be particularly useful for the storage of reified statements
(statements about statements) where the class is rdf:Statement and
the properties are rdf:Subject, rdf:Property, and rdf:Object.

Oracle [22] also adopts a property table-like data structure (they
call it a “subject-property matrix”) to speed up queries over RDF
triples. Their utilization of property tables is slightly different from
Jena2 in that they are not used as a primary storage structure, but
rather as an auxiliary data structure — a materialized view — that can



be used to speed up specific types of queries.

The most important advantage of the introduction of property
tables to the triple-store is that they can reduce subject-subject self-
joins of the triples table. For example, the simple query shown in
Section 2.1 (“return the title of the book(s) Joe Fox wrote in 2001”)
resulted in a three-way self-join. However, if title, author, and copy-
right were all located inside the same property table, the query can
be executed via a simple selection operator.

To the best of our knowledge, property tables have not been
widely adopted except in specialized cases (like reified statements).
One reason for this may be that they have a number of disadvan-
tages. Most importantly, as Wilkinson points out in [31], while prop-
erty tables are very good at speeding up queries that can be an-
swered from a single property table, most queries require joins or
unions to combine data from several tables. For example, for the
data in Table 1, if a user wishes to find out if there are any items in
the catalog copyrighted before 1990 in a language other than En-
glish, the following SQL queries could be issued:

SELECT T.subject, T.object
FROM TRIPLES AS T, PROPTABLE AS P
WHERE T.subject == P.subject

AND P.copyright < 1990

AND T.property = ‘language’

AND T.object != ‘‘English’’

for the schema in 1(c), and

(SELECT T.subject, T.object
FROM TRIPLES AS T, BOOKS AS B
WHERE T.subject == B.subject
AND B.copyright < 1990
AND T.property = ‘language’
AND T.object != ‘‘English’’)
UNION
(SELECT T.subject, T.object
FROM TRIPLES AS T, CDS AS C
WHERE T.subject == C.subject
AND C.copyright < 1990
AND T.property = ‘language’
AND T.object != f‘English’’)

for the schema in 1(d). As can be seen, join and union clauses
get introduced into the queries, and query translation and plan gen-
eration get complicated very quickly. Queries that do not select on
class type are generally problematic for property-class tables, and
queries that have unspecified property values (or for whom property
value is bound at run-time) are generally problematic for clustered
property tables.

Another disadvantage of property tables is that RDF data tends
not to be very structured, and not every subject listed in the table
will have all the properties defined. The less structured the data, the
more NULL values will exist in the table. In fact, these representa-
tions can be extremely sparse — containing hundreds of NULLs for
each non-NULL value. These NULLs impose a substantial perfor-
mance overhead, as has been noted in previous work [13, 16, 17].

The two problems with property tables are at odds with one an-
other. If property tables are made narrow, with few property columns
that are highly correlated in their value definition, the average value
density of the table increases and the table is less sparse. Unfortu-
nately, the likelihood of any particular query being able to be con-
fined to a single property table is reduced. On the other hand, if
many properties are included in a single property table, the num-
ber of joins and union clauses per query decreases, but the number
of NULLSs in the table increases (it becomes more sparse), bloating
the table and wasting space. Thus there is a fundamental trade-off
between query complexity as a result of proliferation of joins and

unions and table sparsity (and its resulting impact on query perfor-
mance). Similar problems have been noted in attempts to shred and
store XML data in relational databases [25, 29].

A third problem with property tables is the abundance of multi-
valued attributes found in RDF data. Multi-valued attributes are sur-
prisingly prevalent in the Semantic Web; for example in the library
catalog data we work with in Section 5, properties one might think
of as single-valued such as title, publisher, and even entity type are
multi-valued. In general, there always seem to be exceptions, and
the RDF data model provides no disincentives for making proper-
ties multi-valued. Further, our experience suggests that RDF data
is often unclean, with overloaded subject URIs used to represent
many different real-world entities.

Multi-valued properties are problematic for property tables for
the same reason they are problematic for relational tables. They
cannot be included with the other attributes in the same table un-
less they are represented using list, set, or bag attributes. However,
this requires an object-relational DBMS, results in variable width
attributes, and complicates the expression of queries over these at-
tributes.

In summary, while property tables can significantly improve per-
formance by reducing the number of self-joins and typing attributes,
they introduce complexity by requiring property clustering to be
carefully done to create property tables that are not too wide, while
still being wide enough to answer most queries directly. Ubiquitous
multi-valued attributes cause further complexity.

3. A SIMPLER ALTERNATIVE

We now look at an alternative to the property table solution to
speed up queries over a triple-store. In Section 3.1 we discuss the
vertically partitioned approach to storing RDF triples. We then look
at how we extended a column-oriented DBMS to implement this
approach in Section 3.2

3.1 Vertically Partitioned Approach

We propose storage of RDF data using a fully decomposed stor-
age model (DSM) [23, 24]. The triples table is rewritten into n two
column tables where n is the number of unique properties in the
data. In each of these tables, the first column contains the subjects
that define that property and the second column contains the object
values for those subjects. For example, the triples table from Table
1(a) would be stored as:

Type . )
Title Copyright
D1 | BookT,
D2 COBTyéﬂe DL | “XYZ DI | 2001
D3 | Booklype D2 | “ABC” D2 | “1985"
D4 | DVDT ID3 | "MNO™ D5 | “1995"
ype SR
ID4 | "DEF D6 | ~2004”
1ID5 CDType 55 “GHF
ID6 | BookType Artiot Lan%uage _
Author rts D2 French’

[ ID2 [ “Orr, Tim” | [ ID3 | “English” |

Each table is sorted by subject, so that particular subjects can be
located quickly, and that fast merge joins can be used to reconstruct
information about multiple properties for subsets of subjects. The
value column for each table can also be optionally indexed (or a
second copy of the table can be created clustered on the value col-
umn).

The advantages of this approach (relative to the property table
approach) are:
Support for multi-valued attributes. A multi-valued attribute is
not problematic in the decomposed storage model. If a subject has
more than one object value for a particular property, then each dis-
tinct value is listed in a successive row in the table for that property.




For example, if ID1 had two authors in the example above, the table
would look like:

Author
[IDI [ “Fox,Joe”
[ IDI | “Green, John” |

Support for heterogeneous records. Subjects that do not define a
particular property are simply omitted from the table for that prop-
erty. In the example above, author is only defined for one subject
(ID1) so the table can be kept small (NULL data need not be explic-
itly stored). The advantage becomes increasingly important when
the data is not well-structured.

Only those properties accessed by a query need to be read. I/O
costs can be substantially reduced.

No clustering algorithms are needed. This point is the basis be-
hind our claim that the vertically partitioned approach is simpler
than the property table approach. While property tables need to be
carefully constructed so that they are not too wide, but yet wide
enough to independently answer queries, the algorithm for creating
tables in the vertically partitioned approach is straightforward and
need not change over time.

Fewer unions and fast joins. Since all data for a particular prop-
erty is located in the same table (unlike the property-class schema
of Figure 1(d)), union clauses in queries are less common. And al-
though the vertically partitioned approach will require more joins
relative to the property table approach, properties are joined using
simple, fast (linear) merge joins.

Of course there are several disadvantages to this approach rela-
tive to property tables. When a query accesses several properties,
these 2-column tables have to be merged. Although a merge join is
not expensive, it is also not free. Also, inserts can be slower into
vertically partitioned tables, since multiple tables need to be ac-
cessed for statements about the same subject. However, we have
yet to come across an RDF application where the insert rate is so
high that buffering the inserts and batch rewriting the tables is un-
acceptable.

In Section 6 we will compare the performance of the property
table approach and the vertically partitioned approach to each other
and to the triples table approach. Before we present these experi-
ments, we describe how a column-oriented DBMS can be extended
to implement the vertically partitioned approach.

3.2 Extending a Column-Oriented DBMS

The fundamental idea behind column-oriented databases is to
store tables as collections of columns rather than as collections
of rows. In standard row-oriented databases (e.g., Oracle, DB2,
SQLServer, Postgres, etc.) entire tuples are stored consecutively
(either on disk or in memory). The problem with this is that if only
a few attributes are accessed per query, entire rows need to be read
into memory from disk (or into cache from memory) before the pro-
jection can occur, wasting bandwidth. By storing data in columns
rather than rows (or in n two-column tables for each attribute in
the original table as in the vertically partitioned approach described
above), projection occurs for free — only those columns relevant to
a query need to be read. On the other hand, inserts might be slower
in column-stores, especially if they are not done in batch.

At first blush, it might seem strange to use a column-store to
store a set of two-column tables since column-stores excel at storing
big wide tables where only a few attributes are queried at once.
However, column-stores are actually well-suited for schemas of this
type, for the following reasons:

Tuple headers are stored separately. Databases generally store
tuple metadata at the beginning of the tuple. For example, Postgres

contains a 27 byte tuple header containing information such as in-
sert transaction timestamp, number of attributes in tuple, and NULL
flags. In contrast, the rest of the data in the two-column tables will
generally not take up more than 8 bytes (especially when strings
have been dictionary encoded). A column-store puts header infor-
mation in separate columns and can selectively ignore it (a lot of
this data is no longer relevant in the two column case; for exam-
ple, the number of attributes is always two, and there are never any
NULL values since subjects that do not define a particular property
are omitted). Thus, the effective tuple width in a column-store is on
the order of 8 bytes, compared with 35 bytes for a row-store like
Postgres, which means that table scans perform 4-5 times quicker
in the column-store.

Optimizations for fixed-length tuples. In a row-store, if any at-
tribute is variable length, then the entire tuple is variable length.
Since this is the common case, row-stores are designed for this
case, where tuples are located through pointers in the page header
(instead of address offset calculation) and are iterated through us-
ing an extra function call to a tuple interface (instead of iterated
through directly as an array). This has a significant performance
overhead [18, 19]. In a column-store, fixed length attributes are
stored as arrays. For the two-column tables in our RDF storage
scheme, both attributes are fixed-length (assuming strings are dic-
tionary encoded).

Column-oriented data compression. In a column-store, since each
attribute is stored separately, each attribute can be compressed sep-
arately using an algorithm best suited for that column. This can lead
to significant performance improvement [ 14]. For example, the sub-
ject ID column, a monotonically increasing array of integers, is very
compressible.

Carefully optimized column merge code. Since merging columns
is a very frequent operation in column-stores, the merging code is
carefully optimized to achieve high performance [15]. For example,
extensive prefetching is used when merging multiple columns, so
that disk seeks between columns (as they are read in parallel) do not
dominate query time. Merging tables sorted on the same attribute
can use the same code.

Direct access to sorted files rather than indirection through a B
tree. While not strictly a property of column-oriented stores, the in-
creased dependence on merge joins necessitates that heap files are
maintained in guaranteed sorted order, whereas the order of heap
files in many row-stores, even on a clustered attribute, is only guar-
anteed through an index. Thus, iterating through a sorted file must
be done indirectly through the index, and extra seeks between index
leaves may degrade performance.

In summary, a column-store vertically partitions attributes of a
table. The vertically partitioned scheme described in Section 3.1
can be thought of as partitioning attributes from a wide universal
table containing all possible attributes from the data domain. Con-
sequently, it makes sense to use a DBMS that is optimized for this
type of partitioning.

3.2.1 Implementation details

We extended an open source column-oriented database system
(C-Store [30]) to experiment with the ideas presented in this pa-
per. C-Store stores a table as a collection of columns, each col-
umn stored in a separate file. Each file contains a list of 64K blocks
with as many values as possible packed into each block. C-Store,
as a bare-bones research prototype, did not have support for tem-
porary tables, index-nested loops join, union, or operators on the
string data type at the outset of this project, each of which had to
be added. We chose to dictionary encode strings similarly to Oracle
and Sesame (as described in Section 2.1) where only fixed-width



integer keys are stored in the data tables, and the keys are decoded
at the end of each query using and index-nested loops join with a
large strings dictionary table.

4. MATERIALIZED PATH EXPRESSIONS

In all three RDF storage schemes described thus far (triples schema,
property tables, and vertically partitioned tables), querying path ex-
pressions (a common operation on RDF data) is expensive. In RDF
data, object values can either be literals (e.g., “Fox, Joe”) or URIs
(e.g.,http://preamble/FoxJoe). In the latter case, the value can
be further described using additional triples (e.g., <BookID1, Au-
thor, http://preamble/FoxJoe>, <http://preamble/FoxJoe,
wasBorn, “1860”>). If one wanted to find all books whose authors
were born in 1860, this would require a path expression through the
data. In a triples store, this query might look like:

SELECT B.subj
FROM triples AS A, triples AS B
WHERE A.prop = wasBorn

AND A.obj = ‘1860’
AND A.subj = B.obj
AND B.prop = ‘‘Author’’

We need to perform a subject-object join to connect information
about authors with information on the books they wrote.

In general, in a triples schema, a path expression requires (n — 1)
subject-object self-joins where n is the length of the path. For a
property table schema, (n—1) self-joins are also required if all prop-
erties in the path expression are included in the table; otherwise the
property table needs to be joined with other tables. For the verti-
cally partitioned schema, the tables for the properties involved in
the path expression need to be joined together; however these are
joins of the second (unsorted) column of one table with the first
column of the other table (and are hence not merge joins).

Author Author
wasBorn wasBorn
() (b)

Figure 2: Graphical presentation of subject-object join queries.

Graphically, the data is modeled as shown in Figure 2(a). Here
we use the standard RDF semantic model where subjects and ob-
jects are connected by labeled directed edges (properties). The path
expression join can be observed through the author and wasBorn
properties. If we could store the results of following the path ex-
pression through a more direct path (shown in Figure 2(b)), the join
could be eliminated:

SELECT A.subj
FROM predtable AS A,
WHERE A.author:wasBorn = ‘‘1860’’

Using a vertically partitioned schema, this author:wasBorn path
expression can be precalculated and the result stored in its own two
column table (as if it were a regular property). By precalculating the
path expression, we do not have to perform the join at query time.
Note that if any of the properties along the path in the path expres-
sion were multi-valued, the result would also be multi-valued. Thus,
this materialized path expression technique is easier to implement
in a vertically partitioned schema than in a property table.

Inference queries (e.g., if X is a part of Y and Y is a part of Z
then X is a part of Z), a very common operation on Semantic Web
data, are also usually performed using subject-object joins, and can
be accelerated through this method.

There is, however, a cost in having a larger number of extra ma-
terialized tables, since they need to be recalculated whenever new
triples are added to the RDF store. Thus, for read-only or read-
mostly RDF applications, many of these materialized path expres-
sion tables can be created, but for insert heavy workloads, only very
common path expressions should be materialized.

We realize that a materialization step is not an automatic im-
provement that comes with the presented architectures. However,
both property tables and vertically partitioned data lend themselves
to allowing such calculations to be precomputed if they appear on a
common path expression.

S. BENCHMARK

In this section, we describe the RDF benchmark we have devel-
oped for evaluating the performance of our three RDF databases.
Our benchmark is based on publicly available library data and a
collection of queries generated from a web-based user interface for
browsing RDF content.

5.1 Barton Data

The dataset we work with is taken from the publicly available
Barton Libraries dataset [1]. This data is provided by the Simile
Project [4], which develops tools for library data management and
interoperability. The data contains records acquired from an RDF-
formatted dump of the MIT Libraries Barton catalog, converted
from raw data stored in an old library format standard called MARC
(Machine Readable Catalog). Because of the multiple sources the
data was derived from and the diverse nature of the data that is cat-
aloged, the structure of the data is quite irregular.

We converted the Barton data from RDF/XML syntax to triples
using the Redland parser [3] and then eliminated duplicate triples.
We then did some very minor cleaning of data, eliminating triples
with particularly long literal values or with subject URIs that were
obviously overloaded to correspond to several real-world entities
(more than 99% of the data remained). This left a total of 50, 255, 599
triples in our dataset, with a total of 221 unique properties, of which
the vast majority appear infrequently. Of these properties, 82 (37%)
are multi-valued, meaning that they appear more than once for a
given subject; however, these properties appear more often (77%
of the triples have a multi-valued property). The dataset provides a
good demonstration of the relatively unstructured nature of Seman-
tic Web data.

5.2 Longwell Overview

Longwell [2] is a tool developed by the Simile Project, which
provides a graphical user interface for generic RDF data exploration
in a web browser. It begins by presenting the user with a list of the
values the fype property can take (such as Text or Notated Music in
the library dataset) and the number of times each type occurs in the
data. The user can then click on the types of data to further explore.
Longwell shows the list of currently filtered resources (RDF sub-



jects) in the main portion of the screen, and a list of filters in panels
along the side. Each panel represents a property that is defined on
the current filter, and contains popular object values for that prop-
erty along with their corresponding frequencies. If the user selects
an object value inside one of these property panels, this filters the
working set of resources to those that have that property-object pair
defined, updating the other panels with the new frequency counts
for this narrower set of resources.

We will now describe a sample browsing session through the
Longwell interface. The reader may wish to follow the described
path by looking at a set of screenshots taken from the online Long-
well Demo we include in our companion technical report [12]. The
path starts when the user selects Text from the rype property box,
which filters the data into a list of text entities. On the right side of
the screen, we find that popular properties on these entities include
“subject,” “creator,” “language,” and “publisher.” Within each prop-
erty there is a list of the counts of the popular objects within this
property. For example, we find out that the German object value ap-
pears 122 times and the French object value appears 131 times un-
der the language property. By clicking on “fre” (French language),
information about the 131 French texts in the database is presented,
along with the revised set of popular properties and property values
defined on these French texts.

Currently, Longwell only runs on a small fraction of the Barton
data (9375 records), as its RDF triple-store cannot scale to support
the full 50 million triple dataset (we show this scalability limitation
in our experiments). Our experiments use Longwell-style queries
to provide a realistic benchmark for testing the designs proposed.
Our goal is to explore architectures and schemas which can provide
interactive performance on the full dataset.

5.3 Longwell Queries

Our experiments feature seven queries that need to be executed
on a typical Longwell path through the data. These queries are
based on a typical browsing session, where the user selects a few
specific entities to focus on and where the aggregate results sum-
marizing the contents of the RDF store are updated.

The full queries are described at a high level here and are pro-
vided in full in the appendix as SQL queries against a triple-store.
We will discuss later how we rewrote the queries for each schema.

Query 1 (Q1). Calculate the opening panel displaying the counts of
the different types of data in the RDF store. This requires a search
for the objects and counts of those objects with property Type.
There are 30 such objects. For example: Type: Text has a count of
1,542,280, and Type: NotatedMusic has a count of 36,441.

Query 2 (Q2). The user selects Type: Text from the previous panel.
Longwell must then display a list of other defined properties for re-
sources of Type: Text. It must also calculate the frequency of these
properties. For example, the Language property is defined 1, 028, 826
times for resources that are of Type: Text.

Query 3 (Q3). For each property defined on items of Type: Text,
populate the property panel with the counts of popular object values
for that property (where popular means that an object value appears
more than once). For example, the property Edition has 8 items with
value “[1st_ed._reprinted].”

Query 4 (Q4). This query recalculates all of the property-object
counts from Q3 if the user clicks on the “French” value in the “Lan-
guage” property panel. Essentially this is narrowing the working set
of subjects to those whose Type is Text and Language is French.
This query is thus similar to Q3, but has a much higher-selectivity.
Query 5 (Q5). Here we perform a type of inference. If there are
triples of the form (X Records Y) and (Y Type Z) then we can in-

fer that X is of type Z. Here X Records Y means that X records
information about Y (for example, X might be a web page with in-
formation on Y). For this query, we want to find the inferred type of
all subjects that have this Records property defined that also origi-
nated in the US Library of Congress (i.e. contain triples of the form
(X origin “DLC?”)). The subject and inferred type is returned for all
non-7ext entities.

Query 6 (Q6). For this query, we combine the inference first step
of Q5 with the property frequency calculation of Q2 to extract in-
formation in aggregate about items that are either directly known to
be of Type: Text (as in Q2) or inferred to be of Type: Text through
the Q5 Records inference.

Query 7 (Q7). Finally, we include a simple triple selection query
with no aggregation or inference. The user tries to learn what a
particular property (in this case Point) actually means by selecting
other properties that are defined along with a particular value of this
property. The user wishes to retrieve subject, Encoding, and Type
of all resources with a Point value of “end.” The result set indicates
that all such resources are of the type Date. This explains why these
resources can have “start” and “end” values: each of these resources
represents a start or end date, depending on the value of Point.

‘We make the assumption that the Longwell administrator has se-
lected a set of 28 interesting properties over which queries will be
run (they are listed in our technical report [12]). There are 26,761,389
triples for these properties. For queries Q2, Q3, Q4, and Q6, only
these 28 properties are considered for aggregation.

6. EVALUATION

Now that we have described our benchmark dataset and the queries
that we run over it, we compare their performance in three differ-
ent schemas — a triples schema, a property tables schema, and a
vertically partitioned schema. We study the performance of each
of these three schemas in a row-store (Postgres) and, for the verti-
cally partitioned schema, also in a column-store (our extension of
C-Store).

Our goal is to study the performance tradeoffs between these rep-
resentations to understand when a vertically partitioned approach
performs better (or worse) than the property tables solution. Ul-
timately, the goal is to improve performance as much as possible
over the triple-store schema, since this is the schema most RDF
store systems use.

6.1 System

Our benchmarking system is a hyperthreaded 3.0 GHz Pentium
IV, running RedHat Linux, with 2 Gbytes of memory, IMB L2
cache, and a 3-disk, 750 Gbyte striped RAID array. The disk can
read cold data at 150-180 MB/sec.

6.1.1 PostgreSQL Database

We chose Postgres as the row-store to experiment with because
Beckmann et al. [17] experimentally showed that it was by far more
efficient dealing with sparse data than commercial database prod-
ucts. Postgres does not waste space storing NULL data: every tuple
is preceded by a bit-string of cardinality equal to the number of at-
tributes, with *1’s at positions of the non-NULL values in the tuple.
NULL data is thus not stored; this is unlike commercial products
that waste space on NULL data. Beckmann et al. show that Post-
gres queries over sparse data operate about eight times faster than
commercial systems.

We ran Postgres with work_mem = 51200, meaning that 50 Mbytes
of memory are dedicated to each sorting and hashing operation.
This may seem low, but the work_mem value is considered per oper-
ation, many of which are highly parallelizable. For example, when



multiple aggregations are simultaneously being processed during
the UNIONed GROUP BY queries for the property table imple-
mentation, a higher value of work_mem would cause the query ex-
ecutor to use all available physical memory and thrash. We set effec-
tive_cache_size to 183500 4KB pages. This value is a planner hint
to predict how much memory is available in both the Postgres and
operating system cache for overall caching. Setting it to a higher
value does not change the plans for any of the queries run. We
turned fsync off to avoid syncing the write-ahead log to disk to make
comparisons to C-Store fair, since it does not use logging [30]. All
queries were run at a READ COMMITTED isolation level, which
is the lowest level of isolation available in Postgres, again because
C-Store was not using transactions.

6.2 Store Implementation Details

We now describe the details of our store implementations. Note
that all implementations feature a dictionary encoding table that
maps strings to integer identifiers (as was described in Section 2.1);
these integers are used instead of strings to represent properties,
subjects, and objects. The encoding table has a clustered B+tree
index on the identifiers, and an unclustered B+tree index on the
strings. We found that all experiments, including those on the triple-
store, went an order of magnitude faster with dictionary encoding.

6.2.1 Triple Store

Of the popular full triple-store implementations, Sesame [21]
seemed the most promising in terms of performance because it pro-
vides a native store that utilizes B+tree indices on any combination
of subjects, properties, and objects, but does not have the overhead
of a full database (of course, scalability is still an issue as it must
perform many self-joins like all triple-stores). We were unable to
test all queries on Sesame, as the current version of its query lan-
guage, SeRQL, does not support aggregates (which are slated to be
included in version 2 of the Sesame project). Because of this limi-
tation, we were only able to test Q5 and Q7 on Sesame, as they did
not feature aggregation. The Sesame system implements dictionary
encoding to remove strings from the triples table, and including the
dictionary encoding table, the triples table, and the indices on the
tables, the system took 6.4 GBytes on disk.

On QS5, Sesame took 1400.94 seconds. For Q7, Sesame com-
pleted in 79.98 seconds. These results are the same order of mag-
nitude, but 2-3X slower than the same queries we ran on a triple-
store implemented directly in Postgres. We attribute this to the fact
that we compressed namespace strings in Postgres more aggres-
sively than Sesame does, and we can interact with the triple-store
directly in SQL rather than indirectly through Sesame’s interfaces
and SeRQL. We observed similar results when using Jena instead
of Sesame.

Thus, in this paper, we report triple-store numbers using the di-
rect Postgres representation, since this seems to be a more fair com-
parison to the alternative techniques we explore (where we also di-
rectly interact with the database) and allows us to report numbers
for aggregation queries.

Our Postgres implementation of the triple-store contains three
columns, one each for subject, property, and object. The table con-
tains three B+ tree indices: one clustered on (subject, property, ob-
ject), two unclustered on (property, object, subject) and (object,
subject, property). We experimentally determined these to be the
best performing indices for our query workload. We also maintain
the list of the 28 interesting properties described in Section 5.3 in
a small separate table. The total storage needs for this implemen-
tation is 8.3 GBytes (including indices and the dictionary encoding
table).

6.2.2 Property Table Store

We implemented clustered property tables as described in Sec-
tion 2.1. To measure their best-case performance, we created a prop-
erty table for each query containing only the columns accessed by
that query. Thus, the table for Q2, Q3, Q4 and Q6 contains the 28
interesting properties described in Section 5.3. The table for Q1
stores only subject and Type property columns, allowing for repe-
titions in the subject for multi-valued attributes. The table for Q5
contains columns for subject, Origin, Records, and Type. The Q7
table contains subject, Encoding, Point, and Type columns. We will
look at the performance consequences of property tables that are
wider than needed to answer particular queries in Section 6.7.

For all but Q1, multi-valued attributes are stored in columns that
are integer arrays (int[] in Postgres), while all other columns are
integer types. For single-valued attributes that are used as selection
predicates, we create unclustered B+ tree indices. We attempted
to use GiST [27] indexing for integer arrays in Postgres?, but us-
ing this access path took more time than a sequential scan through
the database, so multi-valued attributes used as selection predicates
were not indexed. All tables had a clustered index on subject. While
the smaller tables took less space, the property table with 28 proper-
ties took 14 GBytes (including indices and the dictionary encoding
table).

6.2.3 Vertically Partitioned Store in Postgres

The vertically partitioned store contains one table per property.
Each table contains a subject and object column. There is a clus-
tered B+ tree index on subject, and an unclustered B+ tree index on
object. Multi-valued attributes are represented as described in Sec-
tion 3.1 through multiple rows in the table with the same subject
and different object value. This store took up 5.2 GBytes (including
indices and the dictionary encoding table).

6.2.4 Column-Oriented Store

Properties are stored on disk in separate files, in blocks of 64 KB.
Each property contains two columns like the vertically partitioned
store above. Each property has a clustered B+ tree on subject; and
single-valued, low cardinality properties have a bit-map index on
object. We used the C-Store default of 4MB column prefetching
(this reduces seeks in merge joins). This store took up 2.7 GBytes
(including indices and the dictionary encoding table).

6.3 Query Implementation Details

In this section, we discuss the implementation of all seven bench-
mark queries in the four designs described above.

Q1. On a triple-store, Q1 does not require a join, and aggregation
can occur directly on the object column after the property=Type se-
lection is performed. The vertically partitioned table and the column-
store aggregate the object values for the Type table. Because the
property table solution has the same schema as the vertically parti-
tioned table for this query, the query plan is the same.

Q2. On a triple-store, this query requires a selection on property=Type
and object=Text, followed by a self-join on subject to find what
other properties are defined for these subjects. The final step is an
aggregation over the properties of the newly joined triples table.
In the property table solution, the selection predicate Type=Text is
applied, and then the counts of the non-NULL values for each of
the 28 columns is written to a temporary table. The counts are then
selected out of the temporary table and unioned together to pro-
duce the correct results schema. The vertically partitioned store and
column-store select the subjects for which the Type table has ob-

2hltp://www.sai.msu.su/ megera/postgres/gist/intarray/README .intarray



ject value Text, and store these in a temporary table, ¢. They then
union the results of joining each property’s table with ¢ and count
all elements of the resulting joins.

Q3. On a triple-store, Q3 requires the same selection and self-join
on subject as Q2. However, the aggregation groups by both property
and object value.

The property table store applies the selection predicate Type=Text
as in Q2, but is unable to perform the aggregation on all columns in
a single scan of the property table. This is because grouping must be
per property and then object for each column, and thus each column
must group by the object values in that particular column (a single
GROUP BY clause is not sufficient). The SQL standard describes
GROUP BY GROUPING SETS to allow multiple GROUP BY ag-
gregation groups to be performed in a single sequential scan of a
table. Postgres does not implement this feature, and so our query
plan requires a sequential scan of the table for each property aggre-
gation (28 sequential scans), which should prove to be expensive.
There is no way for us to accurately predict how the use of group-
ing sets would improve performance, but it should greatly reduce
the number of sequential scans.

The vertical store and the column store work like they did in
Q2, but perform a GROUP BY on the object column of each prop-
erty after merge joining with the subject temporary table. They then
union together the aggregated results from each property.

Q4. On a triple-store, Q4 has a selection for property=Language
and object=French at the bottom of the query plan. This selection
is joined with the Type Text selection (again a self-join on subject),
before a second self-join on subject is performed to find the other
properties and objects defined for this refined subject list.

The property table store performs exactly as it did in Q3, but adds
an extra selection predicate on Language=French.

The vertically partitioned and column stores work as they did
in Q3, except that the temporary table of subjects is further nar-
rowed down by a join with subjects whose Language table has ob-
ject=French.

Q5. On a triple-store, this requires a selection on property=0rigin
and object=DLC, followed by a self-join on subject to extract the
other properties of these subjects. For those subjects with the Records
property defined, we do a subject-object join to get the types of the
subjects that were objects of the Records property.

For the property table approach, a selection predicate is applied
on Origin=DLC, and the Records column of the resulting tuples is
projected and (self) joined with the subject column of the original
property table. The type values of the join results are extracted.

On the vertically partitioned and column stores, we perform the
object=DLC selection on the Origin property, join these subjects
with the Records table, and perform a subject-object join on the
Records objects with the Type subjects to attain the inferred types.

Note that as described in Section 4, subject-object joins are slower
than subject-subject joins because the object column is not sorted
in any of the approaches. We discuss how the materialized path ex-
pression optimization described in Section 4 affects the results of
this query and Q6 in Section 6.6.

Q6. On a triple-store, the query first finds subjects that are directly
of Type: Text through a simple selection predicate, and then finds
subjects that are inferred to be of Type Text by performing a subject-
object join through the records property as in Q5. Next, it finds
the other properties defined on this working set of subjects through
a self-join on subject. Finally, it performs a count aggregation on
these defined properties.

The property table, vertical partitioning, and column-store ap-
proaches first create temporary tables by the methods of Q2 and
Q5, and perform aggregation in a similar fashion to Q2.
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Figure 3: Performance comparison of the triple-store schema
with the property table and vertically partitioned schemas (all
three implemented in Postgres) and with the vertically parti-
tioned schema implemented in C-Store. Property tables contain
only the columns necessary to execute a particular query.

Q7. To implement Q7 on a triple-store, the selection on the Point
property is performed, and then two self-joins are performed to ex-
tract the Encoding and Type values for the subjects that passed the
predicate.

In the property table schema, the property table is narrowed down
by a filter on Point, which is accessed by an index. At this point, the
other three columns (subject, Encoding, Type) are projected out of
the table. Because Type is multi-valued, we treat each of its two
possible instances per subject separately, unioning the result of per-
forming the projection out of the property table once for each of the
two possible array values of Type.

In the vertically partitioned and column-store approaches, we
join the filtered Point table’s subject with those of the Encoding
and Type tables, returning the result.

Since this query returns slightly less than 75,000 triples, we avoid
the final join with the string dictionary table for this query since this
would dominate query time and is the same for all four approaches.
We are exploring intelligent caching techniques to reduce the cost
of this final dictionary decoding step for high cardinality queries.

6.4 Results

The performance numbers for all seven queries on the four archi-
tectures are shown in Figure 3. All times presented in this paper are
the average of three runs of the queries. Between queries we copy
a 2 GByte file to clear the operating system cache, and restart the
database to clear any internal caches.

The property table and vertical partitioning approaches both per-
form a factor of 2-3 faster than the triple-store approach (the geo-
metric mean® of their query times was 38 and 36 seconds respec-
tively compared with 97 seconds for the triple-store approach®*. C-
Store added another factor of 10 performance improvement with a
geometric mean of 3 seconds (and so is a factor of 32 faster than

3We use geometric mean — the nth root of the product of n numbers — instead of the
arithmetic mean since it provides a more accurate reflection of the total speedup factor
over the workload.

“If we hand-optimized the triple-store query plans rather than use the Postgres default,
we were able reduce its geometric mean to 79 seconds; this demonstrates the fact that
by introducing a number of self-joins, queries over a triple-store schema are very hard
to optimize.



the triple-store).

To better understand the reasons for the differences in perfor-
mance between approaches, we look at the performance differences
for each query. For Q1, the property table and vertical partitioning
numbers are identical because we use the idealized property table
for each query, and since this query only accesses one property,
the idealized property table is identical to the vertically partitioned
table. The triple-store only performs a factor of two slower since
it does not have to perform any joins for this query. Perhaps sur-
prisingly, C-Store performs an order of magnitude better. To under-
stand why, we broke the query down into pieces. First, we noted
that the type property table in Postgres takes 472MB compared to
just 100MB in C-Store. This is almost entirely due to the fact that
the Postgres tuple header is 27 bytes compared with just 8 bytes of
actual data per tuple and so the Postgres table scan needs to read 35
bytes per tuple (actually, more than this if one includes the pointer
to the tuple in the page header) compared with just 8 for C-Store.

Another reason why C-Store performs better is that it uses an
index nested loops join to join keys with the strings dictionary ta-
ble while Postgres chooses to do a merge join. This final join takes
5 seconds longer in Postgres than it does in C-Store (this 5 sec-
ond overhead is observable in the other queries as well). These
two reasons account for the majority of the performance differ-
ence between the systems; however the other advantages of using a
column-store described in Section 3.2 are also a factor.

Q2 shows why avoiding the expensive subject-subject joins of
the triple-store is crucial, since the triple-store performs much more
slowly than the other systems. The vertical partitioning approach is
outperformed by the property table approach since it performs 28
merge joins that the property table approach does not need to do
(again, the property table approach is helped by the fact that we use
the optimal property table for each query).

As expected, the multiple sequential scans of the property table
hurt it in Q3. Q4 is so highly selective that the query results for all
but C-Store are quite similar. The results of the optimal property
table in Q5-Q7 are on par with those of the vertically partitioned
option, and show that subject-object joins hurt each of the stores
significantly.

On the whole, vertically partitioning a database provides a signif-
icant performance improvement over the triple-store schema, and
performs similarly to property tables. Given that vertical partition-
ing in a row-oriented database is competitive with the optimal sce-
nario for a property table solution, we conclude that they are the
preferable solution since they are simpler to implement. Further, if
one uses a database designed for vertically partitioned data such as
C-Store, additional performance improvement can be realized. C-
Store achieved nearly-interactive time on our benchmark running
on a single machine that is two years old.

We also note that multi-valued attributes play a role in reducing
the performance of the property table approach. Because we im-
plement multi-valued attributes in property tables as arrays, simple
indexing can not be performed on these arrays, and the GiST [27]
indexing of integer arrays performs worse than a sequential scan of
the property table.

Finally, we remind the reader that the property tables for each
query are idealized in that they only include the subset of columns
that are required for the query. As we will show in Section 6.7,
poor choice in columns for a property table will lead to less-than-
optimal results, whereas the vertical partitioning solution represents
the best- and worst-case scenarios for all queries.

6.4.1 Postgres as a Choice of RDBMS

There are several notes to consider that apply to our choice of
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Figure 4: Query 6 performance as number of triples scale.

Postgres as the RDBMS. First, for Q3 and Q4, performance for
the property table approach would be improved if Postgres imple-
mented GROUP BY GROUPING SETs.

Second, for the vertically partitioned schema, Postgres processes
subject-subject joins non-optimally. For queries that feature the cre-
ation of a temporary table containing subjects that are to be joined
with the subjects of the other properties’ tables, we know that the
temporary list of subjects will be in sorted order, as it comes from a
table that is clustered on subject. Postgres does not carry this infor-
mation into the temporary table, and will only perform a merge join
for intermediate tuples that are guaranteed to be sorted. To simulate
the fact that other databases would maintain the metadata about the
sorted temporary subject list, we create a clustered index on the
temporary table before the UNION-JOIN operation. We only in-
cluded the time to create the temporary table and the UNION-JOIN
operations in the total query time, as the clustering is a Postgres
implementation artifact.

Further, Postgres does not assume that a table clustered on an
attribute is in perfectly sorted order (due to possible modifications
after the cluster operation), and thus can not perform the merge join
directly; rather it does so in conjunction with an index scan, as the
index is in sorted order. This process incurs extra seeks as the leaves
of the B+ tree are traversed, leading to a significant cost effect com-
pared to the inexpensive merge join operations of C-Store.

With a different choice of RDBMS, performance results might
differ, but we remain convinced that Postgres was a good choice
of RDBMS, given that it handles NULL values so well, and thus
enabled us to fairly benchmark the property table solutions.

6.5 Scalability

Although the magnitude of query performance is important, an
arguably more important factor to consider is how performance
scales with size of data. In order to determine this, we varied the
number of triples we used from the library dataset from one mil-
lion to fifty million (we randomly chose what triples to use from
a uniform distribution) and reran the benchmark queries. Figure 4
shows the results of this experiment for query 6. Both vertical par-
titioning schemes (Postgres and C-Store) scale linearly, while the
triple-store scales super-linearly. This is because all joins for this
query are linear for the vertically partitioned schemes (either merge
joins for the subject-subject joins, or index scan merge joins for
the subject-object inference step); however the triple-store sorts the
intermediate results after performing the three selections and be-
fore performing the merge join. We observed similar results for all
queries except queries 1, 4, and 7 (where the triple-store also scales
linearly, but with a much higher slope relative to the vertically par-
titioned schemes).



Q5 Q6
Property Table 39.49 (17.5% faster) | 62.6 (38% faster)
Vertical Partitioning | 4.42 (92% faster) 65.84 (22% faster)
C-Store 2.57 (84% faster) 2.70 (75% faster)

Table 2: Query times (in seconds) for Q5 and Q6 after the
Records: Type path is materialized. % faster = 120crisinalnel

original

6.6 Materialized Path Expressions

As described in Section 4, materialized path expressions can re-
move the need to perform expensive subject-object joins by adding
additional columns to the property table or adding an extra table
to the vertically partitioned and column-oriented solutions. This
makes it possible to replace subject-object joins with cheaper subject-
subject joins. Since Queries 5 and 6 contain subject-object joins, we
reran just those experiments using materialized path expressions.
Recall that in these queries we join object values from the Records
property with subject values to get those subjects that can be in-
ferred to be a particular type through the Records property.

For the property table approach, we widened the property table
by adding a new column representing the materialized path expres-
sion: Records:Type. This column indicates the type of entity that
is related to a subject through the Records property (if a subject
does not have a Records property defined, its value in this column
will be NULL). Similarly, for the vertically partitioned and column-
oriented solutions, we added a table containing a subject column
and a Records:Type object column, thus allowing one to find the
Type of objects that a resource Records with a cheap subject-subject
merge join. The results are displayed in Table 2.

It is clear that materializing the path expression and removing
the subject-object join results in significant improvement for all
schemas. However, the vertically partitioned schemas see a greater
benefit since the materialized path expression is multi-valued (which
is the common case, since if at least one property along the path is
multi-valued, then the materialized result will be multi-valued).

In summary, Q5 and Q6, which used to take 400 and 200 seconds
respectively on the triple-store, now take less than three seconds on
the column-store. This represents a two orders of magnitude perfor-
mance improvement!

6.7 The Effect of Further Widening

Given that semantic web content is likely to have an unstruc-
tured schema, clustering algorithms will not always yield property
tables that are the perfect width for all queries. We now experi-
mentally demonstrate the effect of property tables that are wider
than they need to be for the same queries run in the experiments
above. Row-stores traditionally perform poorly relative to verti-
cally partitioned schemas and column-stores when queries need to
access only a few columns of a wide table, so we expect the per-
formance of the property table implementation to degrade with in-
creasing table width. To measure this, we synthetically added 60
non-sparse random integer-valued columns to the end of each tuple
in the widest property table in Postgres. This resulted in an approx-
imately 7 GByte increase in database size. We then re-ran Q1-Q7
on this wide property table. The results are shown in Table 3.

Since each of the queries (except query 1) executes in two parts,
first creating a temporary table containing the subset of the rele-
vant data for that query, and then executing the rest of the query on
this subset, we see some variance in % slowdown numbers, where
smaller slowdown numbers indicate that a majority of the query
time was spent on the second stage of query processing. However,
each query sees some degree of slowdown. These results support

Query | Wide Property Table | Property Table
% slowdown

Q1 60.91 381%
Q2 33.93 85%
Q3 584.84 1%

Q4 44.96 58%
Q5 76.34 60%
Q6 154.33 53%
Q7 24.25 298%

Table 3: Query times in seconds comparing a wider than nec-
essary property table to the property table containing only the
columns required for the query. % Slowdown = W
Vertically partitioned stores are not affected.

the notion that while property tables can sometimes outperform ver-
tical partitioning on a row-oriented store, a poor choice of property
table can result in significantly poorer query performance. The ver-
tically partitioned solutions are impervious to such effects.

7. CONCLUSION

The emergence of the Semantic Web necessitates high-performance
data management tools to manage the tremendous collections of
RDF data being produced. Current state of the art RDF databases
— triple-stores — scale extremely poorly since most queries require
multiple self-joins on the triples table. The previously proposed
“property table” optimization has not been adopted in most RDF
databases, perhaps due to its complexity and inability to handle
multi-valued attributes. We showed that a poorly-selected property
table can result in a factor of 3.8 slowdown over an optimal prop-
erty table, thus making the solution difficult to use in practice. As
an alternative to property tables, we proposed vertically partition-
ing tables and demonstrated that they achieve similar performance
as property tables in a row-oriented database, while being simpler
to implement. Further, we showed that on a version of the C-Store
column-oriented database, it is possible to achieve a factor of 32
performance improvement over the current state of the art triple
store design. Queries that used to take hundreds of seconds can now
be run in less than ten seconds, a significant step toward interactive-
time semantic web content storage and querying.
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APPENDIX

The queries below are the seven benchmark queries used in the pa-
per as implemented on a triple-store. Note that while these queries
are accurately described, we dictionary encode all strings into their
own table, and thus the triples table contains integer IDs which are
foreign references into the string table. The actual queries feature
selection predicates on integer values, and have a post-processing
step of joining the strings back onto the result set. Further, the
strings presented here are shortened versions of the full string URIs
in the actual data (the full URISs are presented in our technical report
[12)).

The properties table listed in these queries contains the list of 28
properties that are processed for queries 2, 3, 4, and 6.

Queryl:

SELECT A.obj, count(*)
FROM triples AS A
WHERE A.prop = "<type>"
GROUP BY A.obj

Querys:

SELECT B.subj, C.obj

FROM triples AS A,
triples AS B,
triples AS C

WHERE A.subj = B.subj
Query2: AND A.prop = "<origin>"
AND A.obj = "<info:marcorg/DLC>"
SELECT B.prop, count(*) AND B.prop = "<records>"
FROM triples AS A, AND B.obj = C.subj
triples AS B, AND C.prop = "<type>"
properties AS P AND C.obj != "<Text>"
WHERE A.subj = B.subj
AND A.prop = "<type>" Query6:
AND A.obj = "<Text>"

AND P.prop = B.prop
GROUP BY B.prop

Query3:

SELECT B.prop, B.obj, count(*)
FROM triples AS A,

SELECT A.prop, count(*)
FROM triples AS A,
properties AS P,
(
(SELECT B.subj
FROM triples AS B
WHERE B.prop = "<type>"

triples AS B, AND B.obj = "<Text>")
properties AS P UNION
WHERE A.subj = B.subj (SELECT C.subj
AND A.prop = "<type>" FROM triples AS C,
AND A.obj = "<Text>" triples AS D

AND P.prop = B.prop
GROUP BY B.prop, B.obj
HAVING count(*) > 1

Query4:

SELECT B.prop, B.obj, count(*)
FROM triples AS A,

triples AS B,

triples AS C,

WHERE C.prop = "<records>"

AND C.obj = D.subject

AND D.prop = "<type>"

AND D.obj = "<Text>")
) AS uniontable

WHERE A.subj = uniontable.subj
AND P.prop = A.prop

GROUP BY A.prop

Query7:

properties AS P

WHERE
AND
AND
AND
AND
AND
AND

A.

A
A
P
C
C

C

subj = B.subj SELECT A.subj, B.obj, C.obj

-prop = "<type>" FROM triples AS A,

.obj = "<Text>" triples AS B,

.prop = B.prop triples AS C

.subj = B.subj WHERE A.prop = "<Point>"

.prop = "<language>" AND A.obj = ’"end"’

.obj = AND A.subj = B.subject

"<language/is0639-2b/fre>" AND B.prop = "<Encoding>"
GROUP BY B.prop, B.obj AND A.subj = C.subject
C.

HAVING count(*) > 1

AND C.prop = "<type>"



