
Sync Kit: A Persistent Client-Side Database Caching
Toolkit for Data Intensive Websites

Edward Benson, Adam Marcus, David Karger, Samuel Madden
{eob,marcua,karger,madden}@csail.mit.edu

MIT CSAIL

ABSTRACT
We introduce a client-server toolkit called Sync Kit that
demonstrates how client-side database storage can improve
the performance of data intensive websites. Sync Kit is
designed to make use of the embedded relational database
defined in the upcoming HTML5 standard to offload some
data storage and processing from a web server onto the web
browsers to which it serves content. Our toolkit provides
various strategies for synchronizing relational database ta-
bles between the browser and the web server, along with
a client-side template library so that portions web appli-
cations may be executed client-side. Unlike prior work in
this area, Sync Kit persists both templates and data in the
browser across web sessions, increasing the number of con-
current connections a server can handle by up to a factor of
four versus that of a traditional server-only web stack and a
factor of three versus a recent template caching approach.

Categories and Subject Descriptors: H.2 [Informa-
tion Systems]: Database Management

General Terms: Design, Measurement, Performance.

Keywords: Cache, Client-side, Web, Browser.

1. INTRODUCTION
To support the increasingly sophisticated and feature-rich

applications “hosted” on the web today, programmers who
deploy them must run complex and sophisticated server in-
frastructures. Unlike desktop applications, where all of the
processing and computation is done locally, most web ap-
plications rely on the server to fetch and process data and,
often, to render that data into HTML for presentation on
the client. Building servers that can scale is a tremen-
dous challenge, of which a significant component is manag-
ing load against back-end database systems. Indeed, many
companies (most famously Twitter) have experienced widely
publicized database-system failures due to their tremendous
growth, and have invested great effort into sophisticated
database partitioning and caching infrastructures to reduce
and spread database load.

The tight coupling of applications to a web server can also
generate significant latency in user interactions. Web appli-
cations are located “far” from the data they present to users,
and each data item may take many milliseconds to retrieve
as requests are sent to servers in different parts of the world.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

When many data items are retrieved, latencies can grow to
be seconds long. Asynchronous technologies such as AJAX
allow web applications to remain responsive during these re-
quests, but designing highly responsive web applications in
the face of these latencies, especially on bandwidth-impaired
devices such as phones, remains a challenge.

One way to address the database load problem and la-
tency problem would be to offload data processing to web
browsers. If browsers could access some or all of the data
needed to satisfy a request from a local cache, then pages
would load faster and server-side databases would do less
work. This is especially true in applications such as Face-
book or Twitter where the same data items (e.g., posts on
a user’s news feed) are sent again and again as users reload
pages in search of new messages. In such scenarios, tradi-
tional web caching methodologies are too coarse-grained—
web pages may share a significant amount of data across
repeated accesses, but page content is still dynamic.

Fortunately, the upcoming HTML5 standard includes a
client-side persistent database API that makes it possible to
instantiate and store databases inside the web-browser. The
standard specifies that this store is to be a SQL-compliant
database accessible through a JavaScript API. Though it
was initially designed to support offline access to web appli-
cations via cached data, the same technology can be used
to offload data processing and reduce server-communication
latency even when the client is online. To exploit this tech-
nology, however, application developers have to manually
manage the cache, modifying their queries to take explicit
advantage of the client-side data, and writing code to deter-
mine if cached results are still valid, and to merge cached
results with updates from the server.

To address this complexity, we built a toolkit, Sync Kit,
that allows application developers to easily and efficiently
take advantage of client-databases. Sync Kit provides a li-
brary of data structures for commonly used synchronization
patterns (e.g., a queue of objects, each of which corresponds
to one result in a database query) that programmers use to
express their application. When these structures are used,
Sync Kit generates code for the client that populates a client-
side cache of recently accessed items and reuses the contents
of the cache to produce web pages, fetching new or uncache-
able results from the backend server automatically. Because
database results are cached client-side, Sync Kit provides a
templating library that allows programmers to describe how
to generate a web page from the cached query results.

Furthermore, Sync Kit’s caches can be shared across a
user’s sessions; for example, if a user quits her browser and

then restarts it hours later, the cache from the previous ses-
sion can still be used.

In summary, the contributions of this work are to:

• Identify data access patterns that are widely used on
the web, and build corresponding data structures that
programmers can use to build their applications while
benefiting from client-side database caching that can
achieve the same level of data consistency as their orig-
inal applications.

• Demonstrate that these data structures, when used
properly, can reduce server load. On two realistic
benchmarks based on a blog and a wiki, Sync Kit re-
duces server load by a factor of three versus our im-
plementation of a recently published template-caching
approach and a factor of four versus the traditional
web hosting stack. The data structures also signifi-
cantly reduce data transfer to the client to up to 5%
of its amount in the traditional stack.

• Show that these ideas can be integrated into Sync Kit,
a practical and easy to use web-programming toolkit
that requires no browser modifications and can be im-
plemented via a simple app-server framework that runs
on the server.

2. ARCHITECTURE AND OVERVIEW
In this section, we describe the basic operation of Sync

Kit, including the programming model it presents to devel-
opers and the flow of data as it presents a page to users.

2.1 Programming Model
Programmers using Sync Kit are required to design two

types of structures: data endpoints, which describe the data
that will be used to render a web page, and templates that
describe how to generate HTML from data endpoints. In
our examples, we use the SQL language to describe data
served by data endpoints, but in practice different web pro-
grammings frameworks (e.g., Django, Ruby) may provide
their own query language. The queries and data structures
are written in terms of database tables to which the server
has access.

In the remainder of this section, we introduce our pro-
gramming model through a series of examples.

2.1.1 Data Endpoints
An example data endpoint for a simple blogging applica-

tion is shown in Figure 1; it defines two queries, entry_data
and tag_data. entry_data defines a list of the ten most
recent blog entries that will be presented to the user, and
tag_data defines a set of tags describing those entries. Note
the use of the %entry_data% syntax that makes it possi-
ble for one data endpoint to reference another as a nested
query. In this example, we say that entry_data, whose con-
tents decide the results of the tag_data query, is the parent
of tag_data.

The resulting relations from these endpoint queries can
then be used in templates. For example, the template shown
in Figure 2 constructs an HTML page that contains one
block on the page for each blog entry and its tags. Note
that templates also include SQL, where the tables that are
accessible to these queries correspond to the endpoints de-
fined in the endpoint definition.

def blogDataEndpoint(clientRequestData):
entry_data = QUERY("SELECT id, author,

title, body, lastModified
FROM entries
WHERE published = True
ORDER BY lastModified DESC LIMIT 10")

tag_data = QUERY("SELECT entryid, tagid, tagstring
FROM tags
WHERE entryid IN (

SELECT id
FROM %entry_data%)")

return HTTPResponse(to_json([entry_data, tag_data]))

Figure 1: An example data endpoint containing two
data sets, entry_data and tag_data. The endpoint
returns JSON data to the client to fill in a template.

2.1.2 Templates
Data endpoints are made visible to the web user by com-

bining them with templates. These templates work much
like the templates used in any popular server-side web pro-
gramming environment, except they are executed on the
client-side, using a JavaScript template parser, instead of
being executed on the server.

Though not as popular as server-side solutions, a num-
ber of client-side template libraries are currently in use on
the web [14, 5, 3], all of which operate around the similar
principle that some data object, expressed in JSON, is to be
combined with a declarative template to produce the final
HTML for a page. XSLT [11] also provides a standard way
to transform structured data results into web pages.

Any of these existing client-side template languages could
be adapted to work with Sync Kit’s manner of operation.
Sync Kit simply needs some way to combine data results
and template code once the client is in possession of both.

Our current template library is based off of the HTML5
Microdata specification. This specification provides a way
to use HTML attributes to relate data entities and their
properties to regions of the web document, much like RDFa.
Other HTML5 additions allow for the creation of custom tag
attributes that we use to supplement this semantic markup
with the types of simple control structures that all template
languages must provide. Figure 2 provides an example of
what a Sync Kit template looks like for a table of blog en-
tries. We make use of both upcoming HTML5 tags and
attributes in this example.

<section id="blog_posts"
data-query="SELECT title, author, body FROM entry_data

ORDER BY lastModified DESC LIMIT 10"
data-as="Entry">
<article itemscope itemtype="Entry">

<h2 itemprop="title"></h2>
By
<div class="contents" itemprop="body"></div>

</article>
</section>

Figure 2: A Sync Kit template for a list of blog en-
tries. The template uses data endpoints from Fig-
ure 1 as tables referenced from SQL queries.

In Figure 2, we see an ordinary HTML fragment decorated
with tag attributes that define the way in which data from
the client-side database (having been synchronized using the
data endpoints previously specified) should fill the template.

On the section element, the data-query attribute specifies
the SQL query to perform and the data-as property pro-
vides a name with which to reference a row from the result
(Entry). Later, an item is defined (using the itemscope at-
tribute) that has the same class type as the query result
rows – this lets the template library know that this portion
of HTML is to be repeated for each row of the result. The
template library then iterates over the rows of the Entry

result, filling in the template for each row, resulting in the
output shown in Figure 3, shown truncated to only one blog
post. This output is both a properly rendered HTML frag-
ment and a machine-readable HTML5 Microdata document.

<section id="blog_posts">
<article itemscope itemtype="Entry">

<h2 itemprop="title">My Thoughts on HTML5</h2>
By

Tim Berners-Lee

<div class="contents" itemprop="body">

The HTML5 working group has been...
</div>

</article>
</section>

Figure 3: The output of the template in Figure 2.

2.1.3 Putting the Pieces Together
Using the Sync Kit framework, web developers do not

have to veer far from their current mental model of op-
eration. Web developers are used to thinking about their
programs as being run on the server and delivered to the
client. Under this new model, the same remains true, but
instead of delivering a rendered page, the server delivers a
tuple that specifies both the template to be rendered and
the data endpoints that provide the data to fill the tem-
plate. Using the blog example, this tuple is ["blog.html",

[entry_data, tag_data]].
The Sync Kit framework handles the rest, ensuring data

synchronization between client and server databases, tem-
plate operations on the client, and caching using both HTTP
and HTML5 Manifest caching schemes. We now describe
how this synchronization is actually performed, resulting in
a substantial reduction in load and bandwidth on the server.

2.2 Execution Model
At a high level, Sync Kit execution is handled by the Sync

Kit server, which runs inside the web server (as a collec-
tion of scripts for the Django [1] web framework, in our
implementation), and the Sync Kit client library (written in
JavaScript), which is run by the client browser.

We now describe Sync Kit’s operation with no template
or data caching. When the browser requests a Sync Kit-
enabled page, the Sync Kit server sends it the template,
as in Figure 2. Complex pages are stored across multiple
templates, which are stitched together. This template also
references Sync Kit’s client library, synckit.js, and con-
tains all data endpoint definitions used by the template. The
Sync Kit client library registers a callback into the browser’s
onLoad event, and takes control once the page template has
loaded in the browser. The Sync Kit client library then sends
an asynchronous HTTP request to the server and requests
the current data for all endpoints in the page template. The
server sends back a JSON object containing this data, which
the client library uses to populate the template it received.

So far, we have described a mode of operation that is
essentially the way most AJAX applications work. From
a bandwidth and server load perspective, this approach is
only marginally more efficient than a “traditional” archi-
tecture where the server is responsible for populating the
template. The AJAX approach reduces bandwidth com-
sumption slightly if the size of a repeated template is large
compared to the size of the data being used to populate each
instance of the template, for example.

There are two opportunities for performance gains through
caching, however, which can dramatically improve the situa-
tion. First, if a template has been fetched before, it does not
need to be fetched again for some time. In some cases, this
can result in significant bandwidth savings, as was noted by
Tatsubori and Suzumura [28].

The second and more interesting opportunity for caching
arises with data endpoints. HTML5 provides facilities for
the browser to store relational data in a persistent client-
side database, which can be used to store the data endpoint
results it fetches. Rather than re-fetching the entire data
endpoint, it can request from the Sync Kit server only the
contents of the endpoint that have changed (for example, the
new blog posts that have been written since it last contacted
the server.) It can then combine these new results with
the records cached in the client-side database and use these
combined results to populate the template. We describe how
this caching works in more detail in Section 3.

Figure 4 compares the traditional server-side form of web
hosting (Figure 4a) with a template-caching approach due
to Tatsubori and Suzumura [28] (Figure 4b) and with Sync
Kit (Figure 4c), which caches both data and templates.

3. SYNCHRONIZATION STRUCTURES
The previous section described our approach to caching.

The browser caches results and endpoints issue queries to
fetch results since the last cache update. Realizing this ap-
proach is difficult for two reasons. First, identifying the
cached portion of a query requires semantic analysis of schemas
and queries to determine the portion of a new query that
intersects with previously cached results. Second, rewriting
queries to use caches in way that actually reduces load on
the server is a known hard problem in the database commu-
nity. The main challenge is that the simplest way to reuse
a cached result is to rewrite the query to include a complex
set of WHERE predicates that exclude all of the tuples in
the cache; such predicates slow query execution as they have
to be evaluated on each tuple, and often don’t reduce the
data the database has to read from disk unless appropriate
indices happen to be available.

The problem is usually called semantic caching and has
been well-studied (e.g., [27, 18, 26, 16, 19], and many oth-
ers.) Jónsson [26] shows that existing database systems do
not perform well when presented with arbitrary, complex
queries to retrieve cached results. As a result, most high
performance semantic caching systems require modifications
to the backend database to keep track of changes since the
last access, something we wanted to avoid in Sync Kit.

In Sync Kit, we take a simpler approach that requires no
modifications to the database: programmers write their data
endpoints in terms of data structures that make it easy to de-
termine what has changed since they were last loaded. Sync
Kit currently provides two such synchronization structures:
queues and sets. We discuss other possible synchronization

Browser App
Server

Template
EngineApplication Server

Database

Query Database

Render
Template

HTML

(a) Traditional Control Flow: Template Rendering and
Database Access are on Server

Browser Browser
Cache

App
Server Application Server

Database

Fetch
Template

Request Data

Send Data

Process
Template

Query Database

(b) Template Caching: Template Rendering is on Client

Browser
Database Browser Browser

Cache
App

Server Application Server
Database

Fetch
Template

Get Client
DB State

Request State Update

Send Data Diff

Load Data

Query Data
Process
Template

Query Database

(c) Sync Kit: Template Rendering is on Client, and
Database Accesses are Cached on Client

Figure 4: Web page rendering architectures. White
boxes are client-side and gray boxes are server-side.

structures and improvements on the ones described in this
section in Section 6.

3.1 Queues
Queues capture the idea that results are ordered on some

attribute (say, time) and that this ordering reflects the way
the client will access the data. This makes it easy for the
client library to fetch new data items that have been created
or changed since the last page load by simply sending the
maximum (or minimum) value currently in the client-side
cache of the queue. This abstraction is particularly use-
ful for synchronizing information that fits the ‘feed’ format,
which characterizes a number of websites, including any

news website (e.g., nytimes.com or slashdot.org), email
sites (e.g., gmail.com), and social networking sites that list
updates to friends’ statuses (e.g., facebook.com or twitter.
com).

To see how queues are programmed in our model, consider
the blog endpoint from Figure 1. Suppose the programmer
knows that blog entries are always accessed in time order by
the template in Figure 2. She can then declare that the blog
entry endpoint is a queue, as follows:
entry_data = QUEUE(on = "lastModified"

table = "entries"
order = "DESC"
include = "id, author, title, body, lastModified"
filter = "published = True"
limit = 10)

Here we see a queue synchronization object built around
the entries table in reverse order by the date field. The
queue is limited to 10 items and contains further informa-
tion, such as which projected fields to include and how to fil-
ter the queue inputs (in this case, only messages that have a
published variable set to True). The synchronization spec-
ification is similar to the SQL APIs offered by web toolkits
such as Ruby on Rails [6] and Django [1], but rather than
creating a query result set, it defines data endpoint capable
of synchronizing the result set over multiple web sessions
with a minimal amount of information exchange.

The first time the client library loads this endpoint, a SQL
query identical to the one shown in Figure 1 will be run. The
Sync Kit server will also send the timestamp when these re-
sults were fetched from the database, the table schema that
the client-side database should maintain, and the parame-
ters which define the queue synchronization structure.

Subsequently, whenever the client reloads this endpoint,
it provides the maximum lastModified value in its version
of the synchronized entry_data endpoint. The server will
add a predicate to the WHERE clause of the query to only
retrieve data that is more recent than the client’s lastModi-
fied value. If few entries have been added to the blog since
the last client visit, the server will fetch fewer results, re-
quiring less work if the entries table is properly indexed.
The server will also send less data to the client.

Upon receipt of new data, the client-side library merges
the new results with those already in the browser-side database.
Now that the client-side database state has been refreshed
with the current data, the template library will run. It will
fetch the top 10 blog entries from the client-side database
and fill out the cached template with them. Finally, the
client can discard entries outside the new top 10 from the
browser’s database, as will be discussed in Section 3.5.

3.2 Sets
We now turn to Sets, which are another abstraction pro-

vided by Sync Kit to perform client-server data synchroniza-
tion. Sets capture a basket of data that is unordered from
the perspective of the client. Each data item in the basket
is identified by some key, a role usually served by a primary
key in a relational database. Examples of such sets of items
are products in a web-based store, movies and actors on the
website IMDB, pages on wikis, and the tags used to describe
blog posts in the previous example.

Sync Kit maintains a notion of two different types of sets.
Complete Sets are sets that are actively transferred in their
entirety to the client. After synchronizing with a complete
set endpoint, the client is guaranteed to have the entirety

of the set described. Attributes of members of the set may
change, and items can leave or enter a complete set over
time. One example of a complete set is the tags in the
previous example—the number of tags on a blog is small
enough that it can be sent to the client in its entirety. On
the other hand, one would not want to transfer the entire set
of pages in a large site such as Wikipedia to the client the
first time a user requests a single page on the site. Partial
Sets contain members that are lazily transferred to the client
on a primary key lookup.

3.3 Complete Sets
Complete sets are a useful abstraction for relatively small

collections of data that see frequent client use but do not fit
the access pattern defined by the queue structure. Because
access is random and frequent, and the cost of transferring
the entire set is low, the client and server coordinate to en-
sure that the client has a fresh copy of all set items.

For example, suppose our programmer from the Queue
example would like to add tags to the blog entries view, as
in Figure 1. Remember that the tag_data endpoint requires
a nested query to its parent endpoint, entry_data. Our
complete set of tags is defined by the tags table as well as
the entries that the user will see which will require tags:
tag_data = SET(type = "complete"

table = "tags"

parent = [entry_data,

"entryid = entry_data.id"]

key = "tagid"

include = "entryid, tagid, tagstring")
This definition follows the one of tag_data in the blog

data endpoint of Figure 1. We define the set to be a complete
replica of the table tags for any tag involved in an equality
join on the entry_data result set. We will request tags by
the key tagid, and include the fields entryid, tagid, and
tagstring from the table.

When a client first queries the data without having syn-
chronized entry_data and tag_data before, the server will
construct the query in Figure 1. For subsequent visits, the
client will send the entry_data and tag_data requests with
a list named tag data.tagids, containing the tagid values al-
ready on the client. The server will construct the query in
Figure 1, with an additional WHERE clause predicate indi-
cating that only tags not on the client should be sent:
AND tagid NOT IN (tagid1, tagid2, ...)

3.4 Partial Sets
Partial sets represent a set of items for which the server

does not attempt to maintain a fully synchronized copy on
the client. This type of data structure may be used in cases
where the set of items is too large to reasonably store on
the client-side. Wiki articles are a good example—we would
model the corpus articles on Wikipedia as a partial set. A
table of pages could be synchronized in the following way:
wiki_data = SET(type = "partial"

table = "wiki_pages"

key = "id"

include = "id, title, contents")
This definition indicates that the endpoint wiki_data can

be maintained by performing id lookups on the server as
the client needs them, and that whenever a desired id is
requested, the id, title, and contents of the wiki page
should be delivered.

Whenever client-side logic requires a given wiki page, the
wiki_data synchronization set will first look for the page id
in the client’s local database. If the id is found, it can be
returned to the user. If it is not found, the client can issue
an AJAX request for the page to be delivered to the client.

3.5 Eviction and Consistency
There are three remaining concerns to make synchroniza-

tion structures realistic in paralleling the current web ex-
perience: keeping the client-side database small, ensuring
that the client data mirrors the most up-to-date data on the
server, and enforcing endpoint constraints on templates.

Because the client can not support a database of the mag-
nitude that the server can, we define an eviction policy for
data in the client-side database. A simple LRU eviction pol-
icy works reasonably well, with some caveats. For queues,
evicted entries can only be those outside of a distance of
limit from the maximum lastModified date of items in
those queues. For complete sets, any evictions must mark
the entire set stale, to ensure that future queries are directed
to the server to re-synchronize the data structure. Finally,
for partial sets, no special precautions are required—evicted
elements will be re-requested from the server.

To ensure that the client remains up-to-date with the
server, any modifiable entries in the synchronization struc-
tures must be noted as such, and a last-modified time or
version must be attached to each entry in the underlying
server-side table. All requests to an endpoint which con-
tains modifiable items must send a last-access time, which
denotes when a client last accessed this endpoint. For results
returned by an endpoint during synchronization, only those
with modification time or version larger than the client’s
last-access time will be returned to the client.

Sync Kit currently provides no guarantee that the query
executed in a template will be consistent with the endpoint
defition. For example, in Figure 2, if the programmer mod-
ifies the query to “LIMIT 100,” the client-side cache of the
entry_data table is only defined and guaranteed to contain
the 10 latest records. The programmer must take care to de-
fine the view using the same SQL expression on the server
and client. As we discuss in Section 6, we are investigating
techniques to automatically generate client-side code from a
server-side SQL query, partly to eliminate the possibility of
mismatch in these view definitions.

4. PERFORMANCE EVALUATION
In this section we compare the performance Sync Kit to

our implementation of the Flying Templates [28] approach
and to traditional server-side web hosting. In our consider-
ation of the benefits of various approaches, we look at con-
nection throughput, data transferred per request, and the
client-side latency of each approach. Our experiments con-
sider two websites we built with Sync Kit: a blog site, in
which users revisit the page throughout the day looking for
news updates, and a Wiki, where users browse a connected
graph of web pages, potentially revisiting some pages over
time. We built these websites using content update and hy-
perlink models from real websites.

4.1 Experimental Environment
The server-side programming environment is the Python-

based Django [1] 1.1 web framework. We use nginx as the
webserver to serve both static content directly and dynamic

content over FastCGI to running Django instances. The
webserver runs Ubuntu 9.10 (kernel 2.6.31), and has an In-
tel Core 2 processor with four 2.4GHz cores, 8 MB of L2
cache, and 4 GB RAM. The database, which is on the same
machine, is Postgres 8.4.2. For the throughput and data
transfer tests, our client machine has a 3.2 Ghz Intel Pen-
tium 4 and 2 GB RAM. Both machines are connected to
each other over a local network with link bandwidth 112
MB/s reported by netperf and round trip time 1.516ms to
transfer 1 byte of data over HTTP. We also ran in-browser
timing tests on a netbook running Microsoft Windows XP
and Mozilla Firefox 3.5 over a local network with a round
trip time of 3ms to transfer 1 byte of data. For through-
put tests, the client gradually increased its request rate us-
ing httperf until it identified the point at which the server
stopped responding to all requests with HTTP 200/OK.

4.2 Benchmarked Systems
In assessing Sync Kit, we compare three systems:

Traditional. All template and data processing is performed
on the server. Controller logic on the server performs queries
against a server-side database, and the results are filled in on
a server-side template, which delivers HTML to the client.
The process is implemented with standard components in
the Django web development framework.

Flying Templates. When a user first visits a site, they
retrieve a template which is subsequently cached. The tem-
plate issues AJAX requests to the server, which queries
the server-side database and returns results to the client as
JSON. The client-side JavaScript then fills in the template
with the returned data. Django is used to generate the result
set as JSON, and we wrote a custom JavaScript library for
filling in the static template. This system is similar to the
one described in the work of Tatsubori and Suzumura [28],
although the implementation is our own.

Sync Kit. When a user first visits a site, they retrieve
a template which is subsequently cached. Like Flying Tem-
plates, HTML generation from the template is performed on
the client-side and data is retrieved from the server. Unlike
Flying Templates, the JavaScript library initializes a client-
side database using Google Gears [2] in which all data is
stored and which is synchronized with the server using the
managed data structures described in Section 3. We selected
Gears because the HTML5 standard is still in flux, and as of
this writing no browser implements both the HTML5 data
and caching proposals completely.

4.3 Benchmarks
We implemented our blog and wiki websites for the three

systems listed above. For both sites, we built a benchmark
based on a sample dataset and sample workload using data
from real websites. httperf was used to determine the per-
formance of each workload on each of the three systems.
Overall, the total number of lines of code written to imple-
ment the blog and wiki sites was the same across all three
approaches (typically within a few lines of code) outside of
the included Sync Kit libraries. This is significant because it
suggests that the Sync Kit approach can be made practical
from a programming standpoint.

4.3.1 Blog Benchmark
Blogs are representative of a queue-heavy workload—when

a user visits a blog’s front page, around ten of the most

recent stories on the blog are displayed to the user. A user
who visits frequently will see some new stories and some
older repeated ones. Such experiences occur on sites other
than blogs—web search, web-based email, and social net-
working sites such as Facebook or Twitter are all similar.

In order to generate a representative workload, we mod-
eled our benchmark on popular blogs in the wild. We re-
quested the latest RSS feed from several popular blogs, and
report their time between posts and post sizes in Table 1.
From these, we selected TechCrunch to parameterize a script
which loaded a server-side database with three years of ran-
domly generated content, based on a normal distribution
of post length (µ = 5487, σ = 4349) and an exponential
distribution of time between posts (λ = .53posts/hour).

We re-use the same template of size 100KB for all three
serving strategies. This template consists of basic HTML,
CSS, and stanard JavaScript libraries, of which SyncKit is
a small fraction. All CSS and JavaScript is inlined.

We constructed several client workloads for this site to
examine its performance for clients who re-visit the site at
varying frequencies with respect to the update frequency.
For each ith client workload generated, we modeled users
visiting the site over seven days at a rate of λi relative to the
mean time between posts for the blog. We vary λi between
.008 visits per new post (infrequent visits) and 3.8 visits per
new post (frequent visits). For each visit-per-post frequency,
we added users until we had generated 10,000 requests. In
all cases this resulted in more than 100 users per workload.

Testing with a variety of user visit frequencies is useful
because it frees our analysis from dependence on the content
update frequency that parameterized our blog test data. It
is also useful because user visit patterns to a blog tend to
be independent of the blog’s popularity [20], so a variety of
visit frequencies better reflects real-world workloads.

The first time a user visits the site, both Sync Kit and
Flying Templates request and cache the template for the
site. To model this, we made half of the users new users to
the site, causing their first request to include both data and
template requests. Varying the fraction of new users to the
site did not significantly affect the performance differences
between systems.

On each visit, the client requests the latest 10 articles. To
simulate time, each client sends a currenttime to the server,
indicating the time at which the page is requested.

For the traditional and Flying Templates approaches, a
SQL query of this form is issued on the server-side:
SELECT id, author, title, contents, lastModified

FROM articles

WHERE lastModified < CLIENT_PARAMS["currenttime"]

ORDER BY lastModified DESC

LIMIT 10;
The following Sync Kit queue manages the client cache:

QUEUE(on = "lastModified"
table = "articles"
order = "DESC"
include = "id, author, title, contents, lastModified"
limit = 10)

In addition to the currenttime argument, the Sync Kit
client also sends a maxclienttime parameter to the server, to
indicate the results up to the point which they have synchro-
nized the dataset. The SQL query issued on the server-side
is the same as the one above with the following predicate to
fetch only results newer than the currently cached ones:
AND lastModified > CLIENT_PARAMS["maxclienttime"]

Site Articles Examined Article Length (kB) Template Size (kB) Time Between Articles (min)

Tech Crunch 25 µ = 5.5, σ = 4.3 23.1 µ = 114, σ = 117
ReadWriteWeb 15 µ = 7.5, σ = 6.9 50.1 µ = 263, σ = 343

Slashdot 15 µ = 3.4, σ = 0.6 64.1 µ = 116, σ = 54
Consumerist 40 µ = 3, σ = 1.6 22.6 µ = 111, σ = 226

Gizmodo 39 µ = 2.8, σ = 2.5 49.7 µ = 73, σ = 114
Engadget 40 µ = 7.2, σ = 5 46.0 µ = 85, σ = 64

Table 1: A sample of several popular blogs. Article length is generally an order of magnitude smaller than
template size. New articles come out every one to two hours. If a user visits the front page, which displays
multiple articles, several times per day, they may see the same article more than once.

4.3.2 Wiki Benchmark
If blogs are a prototypical representatives of the queue

synchronization structure, wikis are good representatives of
a set. A wiki (e.g. Wikipedia) can be thought of as a con-
nected graph of primary-keyed data that is too large to send
in its entirety to the client. Because of its size, a wiki is syn-
chronized lazily, and thus represents an partial set synchro-
nization pattern. Note that we do not evaluate complete-set
synchronization in this paper—these sets are usually small
enough to by synchronized in their entirely, or at least as a
nested subquery on queues, and we find their performance
characteristics less interesting than larger partial sets.

To generate the wiki data set, we combined previous stud-
ies of content length and link structure, and suplemented
these numbers with a random sample of the pages accessed
on Wikipedia from publicly available web proxy logs [10].
We then generated 10,000 articles of random content length
(µ = 3276B, σ = 100B) [9] and title length (µ = 22B, σ =
12B) [10] with an average of 23 [8] links per page. To model
article popularity, we assigned a probability of 1

article no.+10

to every article, normalized to generate a proper distribution
after assignment, which creates a Zipfian distribution to rep-
resent hotspots on Wikipedia. Here, lower article numbers
are are more popular than higher ones. The +10 prevents
the first few articles from dominating all others. This distri-
bution is a good approximation of the actual usage patterns
for web resources [15]. Article links were generated such that
the source page was selected uniformly and randomly from
the page set, and the target page was selected proportional
to its assigned popularity probability.

Finally, to generate a workload over the wiki, we modeled
40 users visiting the site over the course of 15 days, once per
day. Within a visit, each user picks an initial page i accord-
ing to the pages’ access probabilities, and navigates to linked
pages by choosing randomly from the normalized probabil-
ity distribution of the pages linked from i. We assigned the
user an exit probability of .5 after each view, which would
end that day’s visit for the user. Because users visit the site
15 times, we can see how repeated accesses to the same page
affect the performance of Sync Kit. The resulting repeated
access rate in three generated workloads was 13.7%–14.9%.

4.4 Results
In this section, we describe the performance results on our

two benchmarks. In both benchmarks, we generated three
random workloads with the parameters in Section 4.3 and
report the average performance of these three.

4.4.1 Blog Benchmark
We tested the traditional, Flying Templates, and Sync Kit

approaches on the blog dataset described in Section 4.3.1.
We now present the performance of each system under vary-
ing user visit frequencies, which are controlled by the λi

parameter described in the benchmark.
The charts in Figures 5 and 6 display measurements of

the maximum throughput and average data transferred per
request as λi increases, causing the user visit-per-post fre-
quency to increase.

●●●●●
●● ● ● ● ●

0 1 2 3

10
0

20
0

30
0

40
0

Visit−per−post Frequency

S
er

ve
r

T
hr

ou
gh

pu
t (

P
ag

es
/s

)

●

●●●●●● ● ● ● ●

●●

●

●

●

●
●

●

● ● ●

Traditional
Flying Templates
Sync Kit

Figure 5: User visit frequency vs throughput.

●●●●
●

●●
●

● ● ●

0 1 2 3

50
10

0
15

0

Visit−per−post Frequency

D
at

a
Tr

an
sf

er
re

d
(K

B
/R

eq
ue

st
)

●●●●●
●● ● ● ● ●

●

●

●
●●●● ● ● ● ●

Traditional
Flying Templates
Sync Kit

Figure 6: User visit frequency vs KB per request.

In all experiments, the Flying Templates approach pro-
vides slightly less than twice the request throughput of the
Traditional approach while transferring 100KB less data per

request as it avoids transferring the template. This result is
similar to that shown in [28] on a different query workload.
Flying Templates sees a drop in throughput between λi = 0
and λi = .5. This is an artifact of our experiment design, as
less frequent visitors see a larger share of their traffic come
from static templates which are faster for the web server
to serve. For infrequently visiting clients, Flying Templates
and Sync Kit perform about the same, as Sync Kit is able to
cache the template from one visit to the next, but there is a
very low probability of any article still being in Sync Kit’s
data cache on the next page load. For clients who revisit
more frequently, however, Sync Kit’s cache helps dramati-
cally. At the extreme, Sync Kit is able to serve a factor of
four (464 vs. 116) more requests per second than the tradi-
tional approach, and nearly a factor of three more than the
Flying Templates approach. It also requires around 13.2%
the data transfer of Flying Templates, and around 5.4% the
data transfer of Traditional.

We now look at the latency from the standpoint of a client
of the system. We ran client-side requests from a netbook
on the same network as the server with connection proper-
ties described above and λi = .31. The results are shown in
Figure 7; on the X axis are the three systems with the total
height of each bar representing the average latency to load
a page in each system. All three approaches have approx-
imately the same client latency (around 400 ms/request).
Note that Sync Kit improves server-side performance with-
out hurting the client’s experience.

Flying Templates Sync Kit Traditional

To
ta

l T
im

e
(m

s)

0

100

200

300

400

Template
Client DB
Net RTT
Server
DOM Load

Figure 7: Client latency for blog workload (λi = .31).

To understand how this latency breaks down, we now look
at the components of the bars in a bit more detail. Looking
at the “server” component, it is clear that Sync Kit does
substantially reduce the total time spent waiting for data
from the server—from 93 ms in the traditional case to 45 ms
in Sync Kit. However, Sync Kit spends an additional 38 ms
loading data into the client database, and 61 ms populating
the template. Note that in all three scenarios, “DOM Load,”
which represents the time to load the DOM of a page into the
browser, dominates the client’s latency. To measure DOM
Load time, we loaded the page into the browser cache and
measured the time until the “onLoad” JavaScript event. All
three systems also incur a negligible 3 ms network round
trip overhead. Flying Templates also performs similarly; it
sends more time waiting for data from the server than Sync
Kit, but does not have to populate the client-side database.

4.4.2 Wiki Benchmark
We ran the same experiments from the blog benchmark

with our set-based wiki benchmark. Figure 8 shows the
throughput (top) and mean kilobytes per request (bottom)
for the wiki experiment. Since there is no varying visitation
rate, we didn’t vary the time parameter in this experiment,
and so these are bar charts rather than line charts. From
these results, it is evident that Sync Kit still has a large ben-
efit over the Traditional approach both in terms of a severe
data transfer reduction and in terms of increased through-
put. Sync Kit offers slightly better throughput and slightly
decreased bandwidth relative to Flying Templates due to the
14% cache hit rate for revisited wiki pages per user. This sig-
nals that improved performance through prefetching might
result in better performance, but the ultimate performance
benefit will depend on the predictability of client browsing.

Flying Templates Sync Kit Traditional
S

er
ve

r
T

hr
ou

gh
pu

t (
P

ag
es

/s
)

0
10

0
20

0
30

0
40

0
50

0

Flying Templates Sync Kit Traditional

D
at

a
Tr

an
sf

er
re

d
(K

B
/R

eq
ue

st
)

0
20

40
60

80
10

0

Figure 8: Server throughput (top) and data transfer
per request (bottom) for the wiki benchmark.

Figure 9 shows the latency results from a client perspec-
tive (again measured from a home computer) for the three
systems. The results are similar to those shown in Figure 7:
overall, the differences in latencies between the three systems
are small; Sync Kit spends a little more time than Flying
Templates on the more complex queries it runs to send its
state to the server, but the difference is is negligible. Again,
the total time is dominated by DOM Load.

5. RELATED WORK
In the FlyingTemplates [28] system, HTML templates are

cached on and populated locally by the client. Templates are
sent to the client, where they are cached using the browser’s
native mechanisms. On page load, a JavaScript library at-
tached to each web page queries the server for the appro-
priate data and combines the data with the page template.
The authors show that this techniques yields up to a 2x

Flying Templates Sync Kit Traditional

To
ta

l T
im

e
(m

s)

0

50

100

150

200

250

300

350

Template
Client DB
Net RTT
Server
DOM Load

Figure 9: Client latency for wiki workload.

throughput improvement in applications where the HTML
is substantially larger than the raw data used to populate a
web page. Sync Kit offers the same benefits as FlyingTem-
plates, but also is able to cache the data behind a template,
in addition to just caching the template. We compared ex-
plicitly to this approach in Section 4.

The Hilda [32, 31, 24] system executes both data opera-
tions and template operations on the client site within the
context of a single web browsing session. It samples server
log files to determine which templates and data elements are
most likely to be accessed within a user’s session, and then
preemptively sends those portions of the web application to
the client. When browsing the site, pre-fetched portions of
the web application can be accessed without contacting the
server. Unlike Sync Kit, Hilda requires developers to build
their entire web application in an unfamiliar declarative lan-
guage; this is what enables the system to move computation
and data from client to server. Hilda does not consider data
persistence on the client. Orchestra [17] performs similar
partitioning of applications written in Java into a server-
side and a client side component.

Ganesh [29] is a caching system for dynamic database data
that, rather than exploiting specific properties of application
data structures, uses cryptographic hashing to identify por-
tions of query results similar to results that have already
been returned and reuses them. This approach has the ad-
vantage that it is transparent to the application developer,
but does not exploit in-client caches as we do.

There has been considerable work on client-side caching
in database systems [30, 22, 21], but this work has typically
assumed that there is a stand-alone database application
running on the client, rather than pushing caching into the
browser. In this work, it is assumed that these client-side
applications can interface with the backend database below
the SQL layer, specifying exactly the tuples or ranges of
records that they have in their cache to ensure consistency.

Other database caching approaches include the Ferdinand
system [23], which uses a proxy to cache database results. A
proxy-based approach has the advantage that it can cache
data for many users, but introduces privacy concerns and
still requires users to go to a server on the Internet to re-
trieve cached data. Other database caching techniques –
such as DBCache [12], DBProxy [13], and memcached [4]
– typically also focus on server-side caches that reduce load
on the database but do not have substantial effects on band-
width and do not push rendering to the client.

Conventional web caching systems (e.g., proxy caches [7])
are similar: they offer the advantage that they work for
many clients, but they still require the server to expend
bandwidth to transfer data to clients. They are also tricky to
get to work for dynamic content. Similarly, browsers locally
cache static content, but such caches are not effective for
highly dynamic web pages of the sort we consider.

As discussed in Section 3, the technique we employ for
determining if a result is in the client-side cache is loosely
inspired by work in the database community on semantic
caching (e.g., [27, 18, 26, 16, 19]). The primary differ-
ence is that we constrain the programmer to access data
through a set of synchronization data structures that we
have devised, allowing us to efficiently determine if a re-
sult from the database is available in the cache. Most rel-
evantly, Chidlovskii and Borghoff [16] observe that web ap-
plications are characterized by simple queries and as such
are amenable to semantic caching, similar to our observa-
tion that a few simple data structures are sufficient to allow
caching for many web-backed data intensive applications.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced Sync Kit, a toolkit for mak-

ing it easy for developers to take advantage of client-side
relational databases that will be introduced with HTML5-
compliant browsers. Sync Kit uses a simple programming
model where users define data endpoints that cache database
objects on the server and templates that describe how to ren-
der web pages in terms of these endpoints. This approach
requires no browser modifications and is implemented as a
simple Python- and JavaScript-based library.

When an endpoint is accessed, its contents are cached in
the server-side database and can be reused the next time a
template that accesses the endpoint is loaded. Templates
are also cached on the client. To ensure that endpoints are
kept consistent with the backend database, endpoints can
be declared to be sets or queues, which enables Sync Kit to
run efficient SQL queries that identify changes in endpoints
since they were added to the cache. Our experiments show
that when cache hit rates are high (as with our blog bench-
mark), the Sync Kit approach performs well—approximately
a factor of four better than the traditional approach and a
factor of three better than the Flying Templates [28] ap-
proach. We also showed that client-side rendering does not
negatively impact client-side performance, despite extensive
use of JavaScript and the overheads of client-side database
access. In short, Sync Kit offers significant performance ben-
efits for data intensive web sites.

Looking forward, there are several ways to extend our
work. One direction is to increase the breadth of the syn-
chronization patterns Sync Kit supports. For example, ag-
gregation is an expensive server-side operation that may in
some cases be offloaded to the client—one can imagine de-
livering a compressed data cube [25] to the client in cases
where aggregation is frequent. We are also exploring ways
to improve the performance of our current synchronization
structures. While partial sets can not be completely repli-
cated on the client-side, some prefetching techniques can be
employed to return frequently co-accessed results that may
satisfy future queries and reduce client-side latency. Instead
of forcing programmers to define their own synchronization
structures, we are also working on a query workload analyzer
to generate or recommend such structures.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their improve-

ments. We also thank David Huynh for his thoughts on im-
proving the performance of client-side database workloads.
Our work was supported by NSF and NDSEG fellowships,
and the NSF under grant number IIS-0448124.

8. REFERENCES
[1] Django web framework.

http://www.djangoproject.com/.
[2] Google gears framework. http://gears.google.com/.
[3] JSON-Template Template Rendering Engine.

http://code.google.com/p/json-template/.
[4] Memcached distributed key-value caching system.

http://www.danga.com/memcached/.
[5] PURE JavaScript Template Engine.

http://beebole.com/pure/.
[6] Ruby on rails web framework.

http://www.rubyonrails.org/.
[7] Squid: Optimising Web Delivery.

http://www.squid-cache.org/.
[8] Using the wikipedia page-to-page link database.

http://users.on.net/~henry/home/wikipedia.htm.
[9] Wikipedia bytes per article, accessed Feb 10, 2010.

http://stats.wikimedia.org/EN/
TablesArticlesBytesPerArticle.htm.

[10] Wikipedia page counters. http://mituzas.lt/2007/
12/10/wikipedia-page-counters/.

[11] Xslt specification. http://www.w3.org/TR/xslt.
[12] M. Altinel, C. Bornh ovd, S. Krishnamurthy,

C. Mohan, H. Pirahesh, and B. Reinwald. Cache
tables: Paving the way for an adaptive database
cache. In VLDB, pages 718–729, 2003.

[13] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
Dbproxy: A dynamic data cache for web applications.
In U. Dayal, K. Ramamritham, and T. M.
Vijayaraman, editors, ICDE, pages 821–831. IEEE
Computer Society, 2003.

[14] E. Benson, J. Meyer, and B. Moschel. Embedded
JavaScript. http://embeddedjs.com/.

[15] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and zipf-like distributions:
Evidence and implications. In In INFOCOM, pages
126–134, 1999.

[16] B. Chidlovskii and U. M. Borghoff. Semantic caching
of web queries. The VLDB Journal, 9(1):2–17, 2000.

[17] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,
L. Zheng, and X. Zheng. Secure web applications via
automatic partitioning. SIGOPS Oper. Syst. Rev.,
41(6):31–44, 2007.

[18] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava,
and M. Tan. Semantic data caching and replacement.
In VLDB ’96: Proceedings of the 22th International
Conference on Very Large Data Bases, pages 330–341,
San Francisco, CA, USA, 1996.

[19] P. M. Deshpande, K. Ramasamy, A. Shukla, and J. F.
Naughton. Caching multidimensional queries using
chunks. In SIGMOD ’98: Proceedings of the 1998
ACM SIGMOD international conference on
Management of data, pages 259–270, New York, NY,
USA, 1998. ACM.

[20] F. Duarte, B. Mattos, A. Bestavros, V. Almeida, and
J. Almeida. Traffic characteristics and communication
patterns in blogosphere. In 1st International
Conference on Weblogs and Social Media

(ICWSMâĂŹ06), Boulder, Colorado, USA, March
2007. IEEE Computer Society.

[21] M. J. Franklin, M. J. Carey, and M. Livny. Local disk
caching for client-server database systems. In VLDB
’93: Proceedings of the 19th International Conference

on Very Large Data Bases, pages 641–655, San
Francisco, CA, USA, 1993.

[22] M. J. Franklin, M. J. Carey, and M. Livny.
Transactional client-server cache consistency:
alternatives and performance. ACM Trans. Database
Syst., 22(3):315–363, 1997.

[23] C. Garrod, A. Manjhi, A. Ailamaki, B. Maggs,
T. Mowry, C. Olston, and A. Tomasic. Scalable query
result caching for web applications. Proc. VLDB
Endow., 1(1):550–561, 2008.

[24] N. Gerner, F. Yang, A. Demers, J. Gehrke,
M. Riedewald, and J. Shanmugasundaram. Automatic
client-server partitioning of data-driven web
applications. In SIGMOD ’06: Proceedings of the 2006
ACM SIGMOD international conference on
Management of data, pages 760–762, New York, NY,
USA, 2006. ACM.

[25] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and
sub-totals. J. Data Mining and Knowledge Discovery,
1(1):29–53, 1997.

[26] B. T. Jónsson. Application-oriented buffering and
caching techniques. PhD thesis, University of
Maryland, College Park, MD, 1999.

[27] B. T. Jónsson, M. Arinbjarnar, B. Thórsson, M. J.
Franklin, and D. Srivastava. ACM Trans. Internet
Technol., 6(3):302–331, 2006.

[28] M. Tatsubori and T. Suzumura. Html templates that
fly: a template engine approach to automated
offloading from server to client. In WWW ’09:
Proceedings of the 18th international conference on
World wide web, pages 951–960, New York, NY, USA,
2009. ACM.

[29] N. Tolia and M. Satyanarayanan.
Consistency-preserving caching of dynamic database
content. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages
311–320, New York, NY, USA, 2007. ACM.

[30] Y. Wang and L. A. Rowe. Cache consistency and
concurrency control in a client/server dbms
architecture. SIGMOD Rec., 20(2):367–376, 1991.

[31] F. Yang, N. Gupta, N. Gerner, X. Qi, A. Demers,
J. Gehrke, and J. Shanmugasundaram. A unified
platform for data driven web applications with
automatic client-server partitioning. In WWW ’07:
Proceedings of the 16th international conference on
World Wide Web, pages 341–350, New York, NY,
USA, 2007. ACM.

[32] F. Yang, J. Shanmugasundaram, M. Riedewald, and
J. Gehrke. Hilda: A high-level language for
data-drivenweb applications. In ICDE ’06:
Proceedings of the 22nd International Conference on
Data Engineering, page 32, Washington, DC, USA,
2006. IEEE Computer Society.

