Demonstration of Qurk: A Query Processor for Human
Operators

Adam Marcus, Eugene Wu, David R. Kgéger, Samuel Madden, Robert C. Miller
MIT CSAIL
{marcua,sirrice,karger,madden,rcm}@csail.mit.edu

ABSTRACT

Crowdsourcing technologies such as Amazon’s Mechanical
Turk (“MTurk”) service have exploded in popularity in re-
cent years. These services are increasingly used for complex
human-reliant data processing tasks, such as labelling a col-
lection of images, combining two sets of images to identify
people that appear in both, or extracting sentiment from
a corpus of text snippets. There are several challenges in
designing a workflow that filters, aggregates, sorts and joins
human-generated data sources. Currently, crowdsourcing-
based workflows are hand-built, resulting in increasingly com-
plex programs. Additionally, developers must hand-optimize
tradeoffs among monetary cost, accuracy, and time to com-
pletion of results. These challenges are well-suited to a
declarative query interface that allows developers to describe
their worflow at a high level and automatically optimizes
workflow and tuning parameters. In this demonstration, we
will present Qurk, a novel query system that allows human-
based processing for relational databases. The audience will
interact with the system to build queries and monitor their
progress. The audience will also see Qurk from an MTurk
user’s perspective, and complete several tasks to better un-
derstand how a query is processed.

Categories and Subject Descriptors

H.4 [Information Systems Applications|: Miscellaneous

General Terms

Databases

Keywords

Database, Mechanical Turk, Human Computation

1. INTRODUCTION

Crowdsourcing platforms such as Amazon’s Mechanical
Turk serviceE] (“MTurk”) allow users to post short tasks
(“HITs”) that other users (“turkers”) can complete for a
small amount of money. A HIT creator specifies how much
he or she will pay for a completed task. Example HITs
involve compiling some information from the web, labeling
the subject of an image, or comparing two documents. More
complicated tasks, such as ranking a set of ten items or com-
pleting a survey are also possible. These platforms are used

"https://www.mturk.com/mturk/welcome

Copyright is held by the author/owner(s).
SIGMOD’11, June 12-16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

to perform data analysis tasks that are either easier to ex-
press to humans than to computers, or for which there are
not yet effective artificial intelligence algorithms.

Task prices vary from a few cents ($.01-$.03/HIT is a com-
mon price) to several dollars for completing a survey. Me-
chanical Turk has around 100,000-300,000 HITs posted at
any timeﬂ Novel uses include matching earthquake survivor
pictures with missing persons in Haitﬁ authoring a picture
bookﬂ and using turkers as editors in a word processor [1].

Qurk is a database system that integrates MTurk-style
tasks as first-class operators. Several challenges arise in de-
veloping such a system. First, the naive implementations
of traditional operators with human guidance results in too
many tasks (e.g., joins as cross products) that result in ex-
traordinary monetary cost. Second, operator implementa-
tions must have redundancy built-in, as individual turker
results are often inaccurate. Third, query execution must
be asynchronous because each HI'T may take several minutes
to generate results. Finally, the difficulty and selectivity of
tasks can not be predicted a priori, requiring an adaptive
approach to query processing.

Several systems provide a programming layer on top of
MTurk [4]°l While they ease the development process of
writing HIT-based systems and introduce performance op-
timizations, they take a procedural approach to workflow
development. CrowdDB [2] offers a SQL interface to hu-
man computation. Qurk differs from CrowdDB in its data
model for handling multiple results from turkers as well as
its focus on operator implementations and optimizations.

Parameswaran and Polyzotis [6] propose some database-oriented

optimizations which could benefit Qurk.

In this demonstration, we present Qurk from the views of
a Qurk user, the query optimizer, and an MTurk user. Au-
dience members will be able to issue queries that generate
HITs to extract, order, filter, and join complex datatypes,
such as images and text blobs. Additionally, a system dash-
board will display optimizer statistics and illustrate how HIT
results flow through the query plan. Finally, the audience
can participate in query processing by answering HITs. This
interaction will highlight the use cases for human-powered
query processing, as well as the process, constraints, and
optimizations involved in effectively processing HIT-based
queries in Qurk.

Zhttp://mturk-tracker.com/general/
3http://app.beextra.org/mission/show/missionid/
605/mode/do
“http://bjoern.org/projects/catbook/
Shttp://www.crowdflower.com

https://www.mturk.com/mturk/welcome
http://mturk-tracker.com/general/
http://app.beextra.org/mission/show/missionid/605/mode/do
http://app.beextra.org/mission/show/missionid/605/mode/do
http://bjoern.org/projects/catbook/
http://www.crowdflower.com

| MTurk |

Statistics Manager

"] | Results Results
HIT Compiler Task4

L Tasks

| | Query Optimizer |

Compiled
HITs
synsaJ L|H

Task Model Task6

H Internal

Tasks
Task Cache xl Task A B

Executor

Manager

Results

Storage Engine

Figure 1: A system diagram of Qurk.
2. SYSTEM OVERVIEW

Qurk is architected to handle an atypical database work-
load. Human computation workloads rarely approach hun-
dreds of thousands of tuples, but an individual operation on
a tuple, encoded in a HIT, can take several minutes. Compo-
nents of the system operate asynchronously, and the results
of almost all operations are saved to avoid re-running un-
necessary steps. We now discuss the details of Qurk, which
is depicted in Figure

The Query Optimizer compiles the query into a query
plan and adaptively optimizes it during query execution.
Query selectivities for HIT-based operators are not known a
priori and user metrics may change mid-query. Additionally,
the optimization function must take into account monetary
cost, the number turkers to assign to each HIT, and the
overall query performance.

The Query Executor takes as input query plans from
the query optimizer, executes the plan, and generates a set
of tasks for humans to perform. There are two key dif-
ferences from traditional executors. First, due to the la-
tency in processing HITs, the query operators communicate
asynchronously through input queues, as in the Volcano sys-
tem [3]. The join operator in Figure [1| contains two input
queues from each child operator, and creates tasks that are
sent to the Task Manager. Second, in contrast to the pull
based iterator model, results are automatically emitted from
the top-most operator and inserted into a results table. The
user can periodically poll the table for new result tuples.

The Task Manager maintains a global queue of tasks that
have been enqueued by all operators, and builds an inter-
nal representation of the HIT required to fulfill a task. The
manager takes data from the Statistics Manager to de-
termine the number of HITs, HIT assignments, and the cost
of each task, each of which can differ across operators. As
an optimization, the manager can batch several tasks into a
single HIT. The task manager can feed batches of tuples to
a single operator (e.g., collecting multiple tuples to sort). It
can also generate HITs from a set of operators (e.g., group-
ing multiple filter operations over the same tuple).

The HIT Compiler generates the HTML form that a
turker will fill out when they accept the HIT (along with
MTurk-specific information), and sends it to MTurk. The
result is passed to the Task Manager, which enqueues the

result in the next operator of the plan. As an optimization,
Qurk caches results in the Task Cache. If Qurk is aware
of a learning model for the task, it trains this model with
HIT results with the hope of eventually reducing monetary
costs through automation (Task Model). Once results are
emitted from the topmost operator, they are stored in the
database, which the user can check on periodically.

3. DATA MODEL AND QUERY LANGUAGE

Qurk’s data model is close to the relational model, with a
key difference: two turkers may provide different responses
to the same HIT. The current method to resolve this is to run
a HIT multiple times in order to improve result confidence.
It is difficult to quantify the uncertainty of a HIT based on
a small sample of results. In our current implementation,
we don’t incorporate an uncertainty model. Instead, Qurk
returns multiple answers to a HIT in a list, which can be
reduced using user-defined aggregates.

We use a SQL-based query language with lightweight UDFs
to give turkers instructions on completing HITs. We intro-
duce the language using two examples.

MTurk-Provided Data

In this example we show how MTurk can be used to supply
data that is returned in the query answer. Query 1 finds the
CEQ’s name and phone number for a list of companies.

Query 1

SELECT companyName, findCEQ(companyName) .CEO,
f£indCEO(companyName) . Phone

FROM companies

Observe that the £indCEO function is used twice, and that
it returns a tuple as a result. In this case, the £indCEOD
function would only be run on MTurk once per company.
We cache a given result to be used in several places (even
possibly in different queries).

Task 1
TASK findCEO(String companyName)
RETURNS (String CEO,String Phone):
TaskType: Question
Text: ‘‘Find the CEO and the CEQ’s phone
number for the company %s’’, companyName
Response: Form((¢‘CE0’’,String),
(¢ ‘Phone’’,String))

The MTurk task for the £indCEQ function is in Task 1.
In our language, UDFs specify the type signature for the
findCEQ function, as well as a set of parameters that control
the MTurk job that is submitted. On the MTurk website, a
job is an HTML form that the turker fills out. The TaskType
field specifies that this is a question the user must answer.
The Response field specifies that the user will provide two
strings as free-text inputs that will be used to produce the
return value of the function. The Text field shows the ques-
tion that will be supplied to the turker. We provide a simple
substitution language to parameterize the question.

Table-valued Join Operator
Query 2 uses MTurk to join two tables. Suppose we have
a celebrities table with pictures of celebrities, and a spot-

tedstars table with submitted celebrity pictures. We want
to identify each submitted celebrity.

Query 2
SELECT celebrities.name, spottedstars.id
FROM celebrities, spottedstars

WHERE samePerson(celebrities.image, spottedstars.image)

Task 2
TASK samePerson(Image[] celebs, Image[] spotted)
RETURNS BOOL:
TaskType: JoinPredicate
Text: ‘‘Drag a picture of any Celebrity
in the left column to their matching
picture in the Spotted Star
column to the right.’’
Response: JoinColumns("Celebrity", celebs,
"Spotted Star", spotted)

The samePerson function takes two lists of images to join.
The task definition is in Task 2. Here, samePerson is of
type JoinPredicate, and takes two table-valued arguments.
The task is compiled into a HIT of type JoinColumns which
contains two columns labeled Celebrity and Spotted Star.

Turkers select matching images from the left and right columns

to identify a match. The number of pictures in each column
can change to facilitate multiple comparisons per HIT.

Qurk also facilitates human-powered filter, rank, and group
by operators. For more details, see [5].

4. DEMONSTRATION OVERVIEW

In this demonstration, we present an end-to-end proto-
type of the Qurk system and exhibit key features via two
interactive interfaces. The first is a dashboard that shows
the status of running queries as well as optimization metrics.
The second asks the audience to solve HITs using an inter-
face similar to MTurk. The core demonstration will focus on
two long-running queries—a query that extends the schema
of a companies table (Query 1) and a query that joins two
tables of images (Query 2).

4.1 Query Status Dashboard

The Query Status Dashboard in Figure [2] provides a win-
dow into the system internals and will give the audience a
sense of the time, budget, and optimization considerations
that go into executing a Qurk query. Audience members will
be able to view the dashboards of currently running queries
as well as queries they have built.

There are several important features provided by the dash-
board. The dashboard displays the current budget and esti-
mates for for total query cost. The interface also describes
the benefits gained from two optimizations: caching of pre-
viously executed UDFs on a tuple, and the use of classifiers
in place of humans for various HITs. Additionally, the user
can explore how different join interfaces, filtering-based re-
duction in cross-product size, and techniques like batching
described in [5] affect accuracy, cost, and latency.

4.2 Task Completion Interface

To better understand the kinds of HITs that Qurk gen-
erates, audience members will be able to complete HITs for
Query 1 and Query 2 using the Task Completion Interface.

Query 1 SELECT name, findCEO(name).CEQ, findCEO(name).Phone FROM companies

HIT Stats Savings
HITs completed 2 Cache Learning Model
Total tasks performed by 5 HITs Saved 22 0
humans
Money Saved $10.52 $0.00

Savings $10.52
Money Used $0.10
Estimated Total Cost $20.40
Estimated Total Time 1 Hr, 23 Min

Time Saved 5Min, 47 Sec 0 Sec

Batching Join Prefiltering
HITs saved 0 (bafchsize 1) 0

HITs in Progress

HIT Description Number of Turkers State Last Update Time

3 |findCEOQO("Microsoft") 20of3 Executing QOct 28, 2010 12:56 PM
4 |findCEQ("Google") 10f3 Executing QOct 29, 2010 12:57 PM
5 |findCEQ("Amazon") 0of3 Waiting For Turkers |Oct 29, 2010 12:55 PM

Current Results

Company Name CEO Phone
IBM Samuel Palmisano -
Cloudera Mike Olson 1-888-789-1488

Figure 2: The Qurk Query Status Dashboard.

Drag a picture of any Celebrity in the left column to their matching picture in the Spotted Star column to the right.

« To select pairs, click on an image on the left and an image on the right. Sclected pairs will appear in the Matched Celebrities list on the left
« To magnify a picturc, hover your pointer above it

« To unselect a selected pair, click on the pair in the list on the Icfi.

« If none of the celcbrities match, check the I did not find any pairs checkbox.

« There may be multiple matches per page.

Celebrity Spotted Star Matched Celebrities

To remove a pair added in error, click on the
ﬁ ,ﬂi i
3

pair in the list below.
1did not find any pairs

23

Figure 3: A join task can take several forms as a
HIT. In this example, turkers are asked to selet
matching pictures in each column.

Figureshows the two-column join interface for implement-
ing joins in Query 2.

This portion of the demonstration will ensure that the
audience’s experience is live. As more audience members
interact with the demonstration, the query workflows they
contribute to will advance, and this progress will be visible
in the Query Status Dashboard.

S. REFERENCES

[1] M. S. Bernstein et al. Soylent: a word processor with a
crowd inside. In UIST 2010.

[2] M. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: Answering queries with crowdsourcing. In
SIGMOD 2011.

[3] G. Graefe. Volcano - an extensible and parallel query
evaluation system. IEEE Trans. Knowl. Data Eng.

[4] G. Little et al. TurKit: human computation algorithms on
mechanical turk. In UIST 2010.

[5] A. Marcus, E. Wu, et al. Crowdsourced databases: Query
processing with people. In CIDR 2011.

[6] A. Parameswaran and N. Polyzotis. Answering queries using
humans, algorithms and databases. In CIDR 2011.

	Introduction
	System Overview
	Data Model and Query Language
	Demonstration Overview
	Query Status Dashboard
	Task Completion Interface

	References

