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Abstract

Crowdsourcing and human computation enable organizations to accomplish
tasks that are currently not possible for fully automated techniques to com-
plete, or require more flexibility and scalability than traditional employment
relationships can facilitate. In the area of data processing, companies have
benefited from crowd workers on platforms such as Amazon’s Mechanical
Turk or Upwork to complete tasks as varied as content moderation, web con-
tent extraction, entity resolution, and video/audio/image processing. Several
academic researchers from diverse areas ranging from the social sciences to
computer science have embraced crowdsourcing as a research area, result-
ing in algorithms and systems that improve crowd work quality, latency, or
cost. Given the relative nascence of the field, the academic and the practi-
tioner communities have largely operated independently of each other for the
past decade, rarely exchanging techniques and experiences. In this book, we
aim to narrow the gap between academics and practitioners. On the academic
side, we summarize the state of the art in crowd-powered algorithms and
system design tailored to large-scale data processing. On the industry side,
we survey 13 industry users (e.g., Google, Facebook, Microsoft) and 4 mar-
ketplace providers of crowd work (e.g., CrowdFlower, Upwork) to identify
how hundreds of engineers and tens of million dollars are invested in various
crowdsourcing solutions. Through the book, we hope to simultaneously intro-
duce academics to real problems that practitioners encounter every day, and
provide a survey of the state of the art for practitioners to incorporate into
their designs. Through our surveys, we also highlight the fact that crowd-
powered data processing is a large and growing field. Over the next decade,
we believe that most technical organizations will in some way benefit from
crowd work, and hope that this book can help guide the effective adoption of
crowdsourcing across these organizations.

A. Marcus and A. Parameswaran. Crowdsourced Data Management: Industry and Academic
Perspectives. Foundations and Trends® in Databases, vol. 6, no. 1-2, pp. 1-161, 2013.
DOI: 10.1561/1900000044.
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Introduction

We are drowning in information, while starving for wisdom.

—E. O. Wilson

With the advent of the “data deluge” [[176], organizations world-wide
have been struggling with designing algorithms and systems to better pro-
cess and analyze the massive quantities of data collected every day. It is es-
timated that 80% of this data is unstructured [205} [196]], consisting largely
of images, videos, and raw text. While there have been significant advances
in automated mechanisms for interpreting and extracting information from
unstructured data, algorithms to fully comprehend unstructured data have not
been developed yet. It is widely acknowledged that we are at least several
decades away from this goal [162,[120].

Humans, on the other hand, are able to analyze certain aspects of un-
structured data with relative ease. Humans have an innate understanding of
language, speech, and images; they are able to process, reason about, and
provide solutions to problems faced often in managing and processing un-
structured data. Moreover, the abundance of cheap and reliable internet con-
nectivity throughout the world has given rise to crowdsourcing or crowd work
marketplaces, such as Mechanical Turk [10] and Upwork [17], enabling the
inclusion of human crowd workers in on-demand data processing tasks.
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In particular, crowdsourcing has been applied in the following large-scale
unstructured data processing applications (among others):

o Content Moderation. Workers in crowdsourcing marketplaces are
often consulted for content moderation of images uploaded on web
sites [3]]. That is, humans are asked to determine whether user-uploaded
images are appropriate for viewing by a general audience.

e Web Extraction. Crowd workers also contribute to tasks like informa-
tion extraction from web sites. That is, workers are asked to provide
specific information by looking up web sites and finding, say, phone
numbers or prices at restaurants [91]. Workers can aid machines in
semi-automatic information extraction systems—for instance, compa-
nies like Yahoo! [18] use crowdsourcing to build web extraction wrap-
pers, and to verify extracted information [40, [87, 88 142 60].

e Search Relevance. Most companies with a search engine, e.g.,
Bing [11], Google [9], and Yahoo!, include crowd workers in evalu-
ating the performance of their search algorithms [26].

o Entity Resolution. Entity Resolution, or deduplication [78]] refers to
the problem of identifying if two textual records refer to the same en-
tity. Groupon and Yahoo! both use crowdsourcing for entity resolu-
tion [105, [104), 34].

o Text Processing. Crowdsourcing is used in spam identification [137]],
text classification [30l [172], translation [199], and text editing [36].
Crowdsourcing is also being used commercially for transliteration of
documents [20]].

e Video and Image Processing. Crowdsourcing is used in video analy-
sis [53]], for image labeling [[160} [185]], and as a visual aid [39].

Unfortunately, in all of these applications, and overall, crowdsourcing can
be subjective or error-prone; it can be time-consuming (crowd workers take
longer than computers); and it can be relatively costly (human workers need
to be paid). Moreover, these three aspects—accuracy, latency, and cost—are
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correlated in complex ways, making it difficult to optimize the trade-offs
among them while designing data processing algorithms and systems.

As an example of these tradeoffs, consider content moderation of images.
We can ask one human worker to verify if each image is appropriate, but
they may make mistakes. As a result, we may need to ask multiple humans to
verify each image. However, asking multiple human workers has higher mon-
etary cost, and might incur higher latency. Furthermore, we can ask multiple
human workers to verify each image in parallel, or ask humans in sequence.
The former option can incur lower latency, while the latter might have lower
monetary cost since we can choose to not ask subsequent questions based on
worker agreement on answers to previous ones.

With nearly a decade passing since crowdsourcing marketplaces have be-
come commonplace, academic researchers and industry users alike have ex-
plored various mechanisms for orchestrating large scale data processing work
by assembling human workers in workflows that attempt to optimize the three
aspects described above (accuracy, latency, and cost), while also expand-
ing our understanding of what is actually feasible using human workers. On
the one hand, academic researchers have proposed programming languages,
frameworks, systems, and algorithms, and have prototyped creative solutions
to problems that are just now feasible to solve with the advent of crowd-
sourcing. On the other hand, several companies have been founded whose
core business is to explore the use of crowd work for various “unsolvable”
tasks, and many companies have embraced crowd work as a mechanism for
accomplishing what was previously infeasible or inefficient.

However, progress in academia and industry on how to best leverage
crowd work for large scale data processing has largely proceeded indepen-
dently. 1t is essential that these two communities work in concert with one-
another. Industrial users and marketplace providers have a lot of wisdom to
share about the problems that are the most crucial to solve, which techniques
work well in practice and which don’t, as well as “best-practice” implementa-
tions of workflows involving crowds. Academia has much to say about how to
leverage large scale data processing in an optimized fashion in many settings.

The primary goal of our book is to bridge the gap between crowdsourc-
ing practitioners and academic crowdsourcing researchers. With this goal in
mind, we will:



e summarize the state of the art in research on crowd-powered algorithms
and systems for data processing, and

e survey industry users and marketplace providers of crowd work to iden-
tify their accomplishments and highlight the unsolved problems they
struggle with.

By describing the state-of-the-art in crowd-powered data processing from
academia, we hope to provide a reference for industry participants to see
if academia have solved their problems, and to articulate the areas that have
the most potential for future research. By engaging industry users and mar-
ketplace vendors, we hope to highlight their chief pain-points and concerns,
identify the status quo, and articulate which areas of future research have
the most potential for impact. Identifying the “tried-and-true” methods that
work well in industry settings that are yet to be formally analyzed in academia
would also be valuable for academics. Furthermore, industry and marketplace
vendors can see if they all face the same challenges, or if other industry or
marketplace participants have solved the problems that they face.

Overall, by connecting the marketplace providers, industry users, and
academia, we hope that these groups are educated about the problems and
solutions that each of them has been working on, in order to facilitate more
transparency, more openness, and also the ability to begin a frank dialog about
the problems and the future of crowdsourcing.

A secondary goal of this book is to argue that crowdsourcing is here to
stay. A common criticism in academia is that crowdsourcing is a fad; that
not too many industry users care about crowdsourcing; and that the recent
interest in crowdsourcing is going to disappear in a few years. Our thesis is
that this is simply not the case. As we will find out in the industry portions of
this book, crowdsourcing is an essential ingredient for any company working
with large datasets. Companies are sometimes not willing to talk about how
much they use crowdsourcing because they are either ashamed about admit-
ting that they rely on crowds instead of sophisticated software or hardware, or
paradoxically because they consider it to be their “secret sauce.” Through our
conversations with industry users, we will highlight the hundreds of employ-
ees and tens of millions of dollars that companies invest into crowd work.

A reader might note that in our coverage of industry users and market-
place providers of crowdsourcing, we do not dedicate attention to an impor-
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tant third group in crowd work: the crowd workers themselves. We first note
that the study of crowd workers is relatively well-explored, with several sem-
inal and ongoing surveys of different crowds over time [161} |99} [177, [165]].
Second, our focus in this study is on the gap between industry and academia,
especially as it relates to large-scale data processing, and we did not view
workers as having a large influence on this gap. Understanding and designing
for crowd workers is of utmost importance for the health and future of crowd
work, but given the existing studies of the crowd and our specific research
aims, it will not be the focus of our attention.

1.1 Chapter Summaries

We have structured the book into the following chaptersﬂ:

e Background (Remainder of this chapter). To establish fluency in
crowdsourcing or crowd work, we present the lifecycle of an example
task, touching on terminology we will use throughout the book.

e Related work (Chapter [2). The research literature has over half a
decade of contributions on various aspects of of crowdsourcing, and we
summarize many of the fields and papers that have influenced crowd-
powered data processing.

e Crowd-powered algorithms (Chapter [3). At its core, data process-
ing relies on a set of algorithms to filter, sort, summarize, categorize,
enumerate, and join datasets. In this chapter, we summarize the state of
the art of making these algorithms crowd-powered, and highlight some
core models and considerations for crowd-powered algorithm design.

e Crowd-powered systems (Chapter ). Some of the earliest contribu-
tions to crowd-powered data processing research were database sys-
tems that integrated the concept of humans to optimize and perform

' As you explore the chapters, keep in mind that crowd-powered data processing is an active
and fast-moving field. As new developments arise, we hope to make updates. If you disagree
with anything in the book, or if you as an industry user or marketplace provider wish to tell
us about how this book compares or contrasts with your experiences with crowd work, please
reach out to us at marcua@marcua.net and adityagp®illinois.edu.
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data processing. We summarize these key systems (CrowdDB, Deco,
and Qurk), and identify their approaches to facilitating declarative data
processing.

e Industry user survey: summary (Chapter [5). To get an industry per-
spective, we survey 13 industry users of crowd work ranging from large
Fortune 500 companies to small single-purpose startups. While we find
both creative and common uses, and best-practices around crowd work,
we also identify several areas for future research and development. In
this chapter, we describe our methodology and participants, and sum-
marize our key findings.

e Survey of industry users: crowd statistics and management (Chap-
ter[6). Some of our participants have invested tens of millions of dollars
into thousands of crowd workers and dozens of full-time employees to
refine their crowd-powered data processing workflows. In this chapter,
we provide summary statistics describing the scope of these operations
and their management.

e Survey of industry users: use cases and prior approaches (Chap-
ter[7). To better understand the benefit of crowd work, we ask partici-
pants what their crowd-powered data processing use cases are. We also
ask them to describe prior approaches, if they existed, to solving these
problems.

e Survey of industry users: task quality, worker incentives, and
workflow decomposition (Chapter[§). We conclude our industry sur-
vey by summarizing various design and implementation decisions that
participants told us about. Specifically, we summarize participants’ ap-
proaches to managing quality, worker incentives, and task decomposi-
tion. One key learning was that the most advanced approaches coming
out of academia do not appear to be making their way into industry.

e Marketplace provider survey (Chapter [9). We survey four of the
largest marketplaces that connect crowd workers and industry users to
understand their view of the market. The four providers differ signifi-
cantly in their methods, scope, and scale, resulting in very different use
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cases, approaches, and problems. We shed light on the problems facing
marketplace providers, which are not always the same as those facing
industry users.

1.2 Crowdsourcing Background

In this section, we describe the basic concepts underlying crowd work, and
define some common terms we will use throughout the book. We follow this
with a short introduction to crowdsourcing and crowdsourcing marketplaces
using an example task.

1.2.1 Fundamental Concepts

There are many conflicting opinions [[153]] on how to define crowdsourcing,
and whether crowdsourcing is indeed the same concept as human computa-
tion. We avoid this debate by relying on a paired definition of crowdsourcing
and human computation:

From Luis Von Ahn’s Ph.D. Thesis [182]: “Crowdsourcing (or
Human Computation) is a paradigm that utilizes human process-
ing power to solve problems that computers cannot yet solve.”

We often use crowd work instead of crowdsourcing or human computation,
which also refers to the same concept: using human input to solve problems.

We now describe how we can leverage crowd work. Crowd work typi-
cally operates via crowdsourcing marketplaces, a market-based approach in
which requesters monetarily compensate contributors (or crowds). Alterna-
tively, voluntary or game-based mechanisms provide other motivating fac-
tors that incentivize human input. In this book, we focus primarily on paid
market-based approaches to crowd work.

Crowdsourcing Marketplaces. There are a number of online crowdsourc-
ing marketplaces. The canonical example of a crowdsourcing marketplace
is Amazon’s Mechanical Turk [10] (also referred to as MTurk for short);
other examples include Samasource [14], Upwork [17], Clickworker [2]], and
Crowdflower [6]. There are estimated to be over 30 crowdsourcing market-
places, and these marketplaces are growing rapidly. In addition, as we will see
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in subsequent sections, many large companies leverage crowdsourcing via in-
ternal crowdsourcing marketplaces, where the scenario is similar, i.e., work-
ers get monetarily compensated for their work, but the workers are employed
in-house or through contractual relationships that companies and workers es-
tablish. Note that these are not strictly crowdsourcing marketplaces in the tra-
ditional sense since these workers have longer-term relationships with com-
panies and are paid a 9-5 wage to work on tasks.

The structure of marketplaces vary, but below, we describe one represen-
tative design that is similar to the design adopted by MTurk. There are two
interfaces for accessing a typical crowdsourcing marketplace. The first is seen
by task requesters, the second is seen by workers.

e The first interface is the one used by the task requesters or fask
designers—these are the individuals or teams who have tasks for which
they would like to leverage crowd work. Tasks are typically introduced
with a task definition or description, and often provide a form consist-
ing of text boxes, drop-down menus, or radio buttons to elicit mean-
ingful information from workers. Task designers design suitable tasks,
and they typically specify the monetary reward or compensation asso-
ciated with these tasks to be paid upon completion. Optionally, they
may specify: (a) the assignment, i.e., the number of identical copies of
the same task to be attempted by different individuals independently,
(b) the amount of time allocated for that task before the task “expires,”
or (c) additional criteria (e.g., a spoken language) that individuals who
want to work on these tasks must satisfy.

e The second interface is the one used by crowd workers, or simply work-
ers, to access the entire set of tasks for which they are eligible, and to
complete work on those tasks. Workers can browse the list of available
tasks, pick up tasks that they wish to attempt, and work on them. In
some cases, the matching or assignment to tasks is done automatically.
The same task may be attempted by multiple crowd workers. If so, the
workers work on tasks independently, and each one is compensated on
completion of the task within the specified time limit.

Voluntary or Gaming-based Crowdsourcing. In addition to paid crowd-
sourcing marketplaces, there are other mechanisms by which humans are
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Crowd-Powered <’\:’
Algorithm / System
Tasks  Answers

PN
s U

Marketplace

2o

Human Workers

Figure 1.1: Interacting with a Marketplace

incentivized to work on tasks. One such mechanism is to solicit volunteers
to work on tasks for a worthy cause. As an example, volunteers were asked
to help translate tweets during the Haiti earthquake [206], or help identify
galaxies in astronomical images [154}[193]]. Yet another mechanism relies on
games [[183]. In this mechanism, people play games for fun, without realizing
that the games are, in fact, tasks that need to be solved.

Even though our focus is on crowdsourcing marketplaces, the crowd-
powered algorithms and systems that we talk about can also be used in con-
junction with voluntary or gaming mechanisms, since there is still a limited
budget of human attention that those mechanisms require that can be treated
as analogous to monetary cost in crowdsourcing marketplaces.

1.2.2 Interacting with a Crowdsourcing Marketplace

We now describe how crowd-powered algorithms or systems interact with a
marketplace to create tasks for crowd workers. An informal diagram of the
interaction is shown in Figure [I.1] The algorithms and systems we describe
operate on data items like images, videos, or text, and construct tasks to be
asked to workers. These tasks are generally expressed using HTML markup
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Do the following images satisfy no watermark (no text or logo
on top of image) ?

Thumbnail Image Details Rate
Large Image: Yes No

http://www.clipartpal.com/_thumbs/005...
Context: http://www.clipartpal.com/clipart/sch...

Large Image: Yes No
http://www.clipartpal.com/_thumbs/034...
Context: http://www.clipartpal.com/clipart/sch...

Large Image: Yes No
http://www.clipartpal.com/_thumbs/041...
Context: http://www.clipartpal.com/clipart/sch...

Large Image: http://www.illustrationsof.com/royalt... Yes No
Context: http://www.illustrationsof.com/95541-...

m (Click to get paid)

Figure 1.2: Filtering Task

for descriptions or examples, and HTML forms for input. Tasks are posted
on the crowdsourcing marketplace using an API specific to the marketplace,
along with worker requirements and payment policies. These tasks are an-
swered by workers independently. Once answers to these tasks are provided
back to the crowd-powered algorithm or system, the algorithm or system may
choose to issue additional tasks once again, or may instead terminate.

Since workers may be concurrently working on different tasks, we can
view the algorithm or system as having workers work on tasks in parallel,
waiting for their responses, then having workers work on additional tasks in
parallel, and so on. However, note that the system can in fact issue new tasks
to the crowdsourcing marketplace before the outstanding ones are complete.

Example Tasks

We show two example tasks, as seen by workers, in Figures [I.2] and [I.3]
Once a crowd worker completes either of these tasks, the worker can submit
their responses to receive compensation for their effort.
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Rate each image on how funny it is :

Rate on a scale of 1 to 5, from not funny (1) to very funny (5).

Thumbnail Image Details Rate

Large Image: http://i410.photobucket.com/albums/pp... 1 2 3 4 5
Context: http://s410.photobucket.com/albums/pp...

’; lr‘;w:., mna

HAS A HAT. Large Image: http://icanhascheezburger.files.wordp... 1 2 3 4 5
r%% Context: http://eyeonlifemag.com/a-hat-for-all...

Large Image: http://cache3.asset-cache.net/gc/1431... 1 2 3 4 5
Context: http://www.gettyimages.com/detail/pho...

MY BODYISIHAT Large Image: http://cdn.uproxx.com/wp-content/uplo... 1 2 3 4 5
v 277 P} Context: http://www.uproxx.com/gammasquad/2012...

mﬂfm (] ;vuui

m (Click to get paid)

Figure 1.3: Rating Task

The first task consists of a batch of four filtering questions. These ques-
tions check if specific items (in this case, images) satisfy a given filtering
predicate (in this case, whether they do or do not have a watermark). In this
task, notice that only the last image does not have a watermark; while it is
easy to make out the watermark in the first and third images, the watermark
in the second image is much harder to distinguish from the rest of the im-
age, and crowd workers may be more likely to make a mistake on this image
compared to the other images. Thus, ensuring that we get correct answers for
filtering questions on some items may be more difficult than others.

The second task consists of a batch of four rating questions, or questions
requesting ratings for specific items (once again, images) for the predicate
how funny it is. In this task, since humor is subjective, different crowd work-
ers may have different opinions on what constitutes a funny image. Further-
more, some workers may be much more generous than others in providing
high ratings. Thus, given various worker answers, inferring the true rating for
each image is not trivial.
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1.2.3 Terminology

There are several terms we use throughout the book; we collect them here to
serve as an easy reference:

e Crowdsourcing/Human Computation/Crowd Work. Leveraging
human processing power to solve problems that computers cannot yet
solve.

o Marketplace/Platform. The online forum where requesters can post
tasks, and workers can pick up tasks and work on them. We will use
both marketplace and platform to refer to both popular forums such
as Mechanical Turk (see below) or CrowdFlower, as well as in-house
operations where workers work on tasks from 9-5.

o MTurk/Mechanical Turk. One of the popular crowdsourcing market-
places, often used by academics.

o Marketplace Provider. Companies like Mechanical Turk and Crowd-
Flower that provide a marketplace or platform for crowdsourcing.

o Worker/Contributor/Crowd Worker/Human Worker/Contractor.
The human being completing the task at hand.

e Requester/Designer/Developer. The human being or team designing
and developing the task for crowd workers to complete.

o Task definition. The high-level description and implementation of the
task being completed (e.g., Please identify the gender of the person in
each of the following images).

o Task/Item/Unit/Question. A unit of work that a crowd worker must
complete (e.g., Identify the gender of the person in the following image:
(image 1)).

e Interface. This is the view presented to the crowd worker when they
choose to work on a task. This could involve textual descriptions, as
well as forms.

o Answer/Response. The response given by a crowd worker for a task.
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Introduction

Assignment. A matching of a worker to a task—this may be done au-
tomatically by the marketplace, or on-demand by the workers, or on-
demand by the requester. Tasks are often assigned redundantly to mul-
tiple workers.

Microtask. The most popular form of task in traditional crowd work
environments, in which short, relatively precise and often limited re-
sponses are allowed (e.g., multiple choice questions, yes/no questions).

Macrotask. A task that is higher-level and more freeform, and takes
longer to elicit a response (e.g., Research and write up three pages on
the British banking system).

Reward/Compensation. The incentive provided to the workers upon
completion of the task.

Crowd-Powered Algorithm. An algorithm where the unit operations
are performed by crowd workers as an integral component. For exam-
ple, sorting images where crowd workers compare pairs of images.

Crowd-Powered System. A system or framework that uses crowd
work as an integral component.

Latency. The time taken by a crowd-powered algorithm or system to
complete.

Error Rate. The rate at which workers end up answering tasks incor-
rectly. This is typically a number between 0 and 1.

Worker Quality/Worker Accuracy. One minus the error rate of work-
ers. This is how often workers end up answering tasks correctly.

Crowdsourcing Best Practices

In as much as there is deep science and research behind effective crowd-
sourced task design, there are also some practices to follow that should
provide good results. Recent work has also cataloged similar best practices

specifically for information retrieval tasks [24]. Here are a few practices to
follow when designing tasks:
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o Decomposition. Break larger tasks down into smaller ones. For exam-
ple, say you wish to find images of cats in a large collection of animal
photos. Avoid asking workers to spend an hour searching for an exam-
ple image of a cat in a stream of photos. Instead, show workers one
image at a time, and ask them whether the photo contains a cat.

e Closed-Ended, Easy to Answer Responses. Opt for well-defined,
closed-ended responses where possible, and pick interactions that make
it as hard to answer a question incorrectly as it is to answer correctly.
Imagine that you wish to identify the key character in a paragraph ex-
cerpted from a book. If you ask workers to fill in the name of the char-
acter in a free response text field, it is easier to leave the field empty
or with unhelpful text than it is to fill in the correct character. Further,
in filling in the correct character, the workers may unwittingly end up
making errors. If you instead create a multiple choice interface where
the characters of the book are pre-populated, selecting the key charac-
ter is as simple as providing an incorrect response.

o Instructions and Examples. Write detailed instructions, and provide
several examples. Most workers appreciate thoughtful step-by-step in-
structions to complete tasks correctly, and find nuanced examples help-
ful so that they can acclimate themselves to how you would complete
various tasks. Providing a list of “do’s” and “don’ts” is also helpful.

e Debug. After you have prototyped a task, have a colleague who is not
familiar with your work complete the task. Watch them complete it and
have them talk you through their understandings and actions to identify
any places for improvement in your interfaces or terminology.

e Pay Fair. Fair pay is as critical in crowd work as it is in any other form
of work. Once you have settled on a task design and implemented it,
find a different colleague that has not seen the task before. Time their
completion of several tasks, and from that, determine how many tasks
per hour you can expect someone to complete. Keep in mind that your
colleagues might have certain subject matter expertise that allow them
to complete tasks faster, and be prepared to correct for poor estimates.
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Based on the expected tasks completed per hour, price your tasks such
that they result in a fair hourly rate. Rates differ by platform and task,
but expect to pay a rate that is higher than the American minimum
wage.

e Respond to Feedback. Either through the platform or through forums
that workers use (e.g., TurkerNation [16]]), seek out worker feedback
and respond to it quickly. Expect to iterate on your task design and im-
plementation as you learn from your collaboration with workers [25].

e Manage Quality. Because your instructions might be misleading, and
because workers might make mistakes, you should expect multiple
workers to answer each question/task. If the responses to the task you
have created are closed-ended, send each task assignment to multiple
workers and combine redundant responses. Combine their responses
with simple techniques like majority voting, or more complex ones
that we describe in Section [2.3.2] If instead your task is open-ended
(like typing up free-response text), take multiple workers’ responses
and show them to a different set of workers that can identify the best
responses [36]. Once you have determined which workers tend to ef-
fectively answer questions, provide them with bonuses for their good
work, and offer them future work with you as a reward.

Note that much of this advice applies mostly to microtask-based work, and
won’t all be relevant as tasks become more complex. At a high level, itera-
tively testing your designs and establishing trusted relationships with crowd
workers [[165] will improve your experience and theirs, and this advice ap-
plies to any form of crowd work.

1.4 Assumptions in this Book

Crowdsourcing has come to encompass a large corpus of work distribution
mechanisms. For the purposes of this book, we focus primarily on paid
microtask-based crowd work. While our surveys and interviews touch on
other areas of the design space, our primary areas of study for crowd-powerd
data processing systems assume small, well-defined tasks that many workers
have access to on a paid basis through a marketplace provider of crowd work.
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Related Work

We now present a brief overview of how different academic communities
approach crowdsourcing research. In Table [2.1] we list these communities
along with the section in which we discuss the work done by that community.
As communities overlap in research interests, we sometimes arbitrarily assign
a line of work to a community, even though it might not be a perfect fit. We
omit the discussion on crowd-powered algorithms. We will cover these papers
in Chapter 3]

Figure [2.1] presents another depiction of the concerns across communi-
ties. For each community, we display in order, the importance of six differ-
ent interest areas: pricing tasks, interface design, system/algorithm design,
learning accuracies, optimizing cost & accuracy, and understanding behav-
ior. For instance, both the systems/algorithms and HCI communities consider
system/algorithm development important, but the HCI community also con-
siders interface design important, while the systems/algorithms community
also considers optimizing cost and accuracy important.

17
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Discipline Perspectives

Human Computer Interaction (Section|2.2) Better interface design; novel interaction mechanisms
Machine Learning (Section

3}
4

Game Theory (Section | Pricing; incentives; game design

Crowd-provided training data; improving crowdsourcing

Social Science (Section Behavioral experiments; motivations; demographic studies

Systems and Algorithms (Section Chapter | Humans as data processors; workflows; optimization

Table 2.1: Summary of Perspectives across Communities

SYSTEMS /
GAMETHEORY ALGORITHMS Al/ ML HCI SOCIAL SCIENCE
Pricing tasks System / Learning System / Understanding
Algorithm design accuracies Algorithm design behavior
. Optimizing cost Optimizi ; ' ’
Interface design p& accurgcy Pty Interface design Learning accuracies
Understanding behavior Learning accuracies Understanding behavior Understanding behavior Pricing tasks
System / Algorithm design Pricing tasks. System / imizi Interface design
KEY (MULTIPLE SELECTIONS PERMITTED)
Primary interest area Secondary interest area Tertiary interest area Quaternary interest area

Figure 2.1: Comparison of Concerns Across Fields

2.1 Surveys

There are a number of recent surveys describing various aspects of crowd-
sourcing research. The article that coined the term crowdsourcing first ap-
peared in Wired [33]]. Quinn et al. [[153] present a taxonomy of the various
terms (e.g., crowdsourcing, social computing, human computation) used to
describe the different ways humans may participate in computer algorithms
and systems. Perhaps the most comprehensive survey on crowdsourcing is
the monograph by Law and Von Ahn [122]. Doan et al. [[74] provide another
survey on crowdsourcing technologies.

2.2 Human Computer Interaction

The Human Computer Interaction (HCI) community has been focused on de-
veloping new platforms for interacting with and understanding crowd work-
ers. We divide the HCI work into two subsections. First, we cover the de-
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velopment of novel crowd interfaces and their usage in applications for both
end-users and supervisors of crowd-powered tools. Second, we cover the de-
velopment of games as a mechanism to interact with human workers.

2.2.1 Novel Worker and User Interfaces

We now describe a collection of novel interfaces considered by the HCI com-
munity to get useful input from workers.

e Bounding-box interfaces. Noronha et al. show with Platemate [139]
that in addition to labeling images with which foods they contain,
MTurk workers are also effective at estimating the nutritional prop-
erties of the food, such as how many calories the food contains.

o Reposting and workers-on-standby. Bigham et al. [39, 39, [139] de-
scribe a mobile phone application that allows blind users to have vari-
ous crowds, ranging from Mechanical Turk workers to their Facebook
friends, to label objects they take pictures of. In such a scenario, la-
tency is important, and the authors present a system called quikTurkit
that, for a fixed price, can drastically reduce the latency of results. La-
tency reduction is accomplished through several techniques, including
reposting tasks with regular frequency and posting more tasks than are
immediately available to entice workers. Similarly, Bernstein et al. [[35]]
describe how to keep workers on standby to ensure low latency on tasks
like assisted photography.

e Collaborative Error-Finding, Fixing, and Verification. In Soy-
lent [36]], Bernstein et al. add crowd-powered text shortening, proof-
reading, and macro functionality to Microsoft Word. The authors
present a programming paradigm they name Find-Fix-Verify, which is
designed to elicit several small bits of creative work from the crowd
and then have other crowd workers rate the alternative contributions to
separate good from bad.

e Collaborative Constraint Satisfaction. In Taskplan [200], Zhang et
al. present an interface for collaborative constraint satisfaction for com-
plex tasks such as planning a trip.
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e Tools for Application Developers. There is also work from the HCI
community on improved interfaces for task requesters to supervise and
evaluate workers, including visualizing worker behavior [164], super-
vising their work [[77]], performing analytics on worker retention and fa-
tigue [93]], and relinquishing control of GUIs to remote workers [121]].

2.2.2 Games With a Purpose

Work by Von Ahn’s group has explored the design of game-based in-
terfaces to extract useful data from human players without monetary re-
wards [182} [185) [183] 1184, [186]]. As an example, the ESP game has players
collaboratively guess tags for images while simultaneously providing useful
labels for images as a by-product. ReRCAPTCHAs have users transcribe or
decipher one known word and one unknown word to authenticate themselves
as human beings while simultaneously providing transcriptions for digitized
books or audio clips. Peekaboom has players identify the portions of an im-
age are the most evocative of a specific tag while simultaneously providing
useful image understanding datasets.

Creating enticing games for the purpose of extracting useful data has
been applied in other fields as well—FoldlIt [S7] has humans identify sta-
ble 3-D configurations for proteins, while Duolingo [8]] has humans translate
sentences while learning a new language. In a mix of human and machine
computation, Branson et al. integrate humans and learning algorithms into a
visual 20 questions game [45]]. In this game, a coordinating algorithm uses
machine vision to select and put an ordering on the questions asked of hu-
mans to assist in classifying pictures of birds.

This research shows that crowd algorithms and optimization techniques
can prove helpful in domains where workers are not compensated monetarily
for their contributions, but are instead enticed to continue contributing via
“gamification.”

2.3 Machine Learning and Artificial Intelligence

The Machine Learning (ML) and Artificial Intelligence (AI) communities
have been studying how crowds may be used to get better training data, and
how machine learning algorithms may be used to improve crowdsourcing.
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2.3.1 Active Learning

The field of Active Learning studies the problem of adaptively selecting train-
ing data to be labeled to improve the performance of machine learning algo-
rithms. The survey by Settles et al. [169] provides a good overview of the
area. Most papers in Active Learning do not assume that the labels for train-
ing data may be human-provided (or at least that they are provided by ex-
perts rather than error-prone workers) and therefore may contain mistakes,
although a small fraction of papers do take mistakes into account.

Papers focusing on the theory of active learning [56} 164} [111} 311192} 138}
37,1281 1631198, 1136] show that the adaptive selection strategies proposed (i.e,
the procedures that select, at any point, a training example to be labeled by
a worker) provably converge to the optimal machine learning model, under
some assumptions on the selection of training data to be labeled, as well as the
noise in the underlying model. Some of these schemes suffer from a severe
computational barrier: they explicitly maintain all models that are still under
consideration at each point during adaptive selection of training data points.
Recent approaches, such as Importance Weighted Active Learning [38] try to
eliminate this computational barrier while providing comparable guarantees.

Other papers have suggested many adaptive selection schemes that work
well in practice (but provide limited to no theoretical guarantees), including,
uncertainty sampling (picking the training data point that the current model is
least certain about) [[171}[123]], query by committee (picking the training data
point that a “committee” of current models disagree about) [170], or error
reduction (picking the training data point that is most likely to reduce the
error).

2.3.2 Quality Estimation

One of the key goals in building crowdsourced workflows is to identify work-
ers that produce high quality output, and tasks that are reliable. We now cover
several approaches to achieving this goal in the literature.

Expectation Maximization, or EM [66} [70] has been studied and used
by the statistics and machine learning communities for several decades now,
with many textbooks and surveys on the topic [90, 135} [187]. Expectation
Maximization provides maximum likelihood estimates for hidden model pa-
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rameters based on a sequence of E and M steps or iterations that converges to
a locally optimal estimates for the hidden model parameters.

There have been a number of recent papers that study the use of EM
to simultaneously estimate the answers to tasks and error rates of work-
ers. These papers consider increasingly expressive models for this estimation
problem, including worker bias [100], difficulty of tasks and worker exper-
tise [193} (157, 1106, |[108]], adversarial behavior [[156], and online evaluation
of workers [191} [128] [155]. There has also been some work on selecting
which items to get evaluated by which workers in order to reduce overall
error rate [[171}75]].

There has been some work that adapts techniques different from EM to
solve the problem of worker quality estimation, also with no global guar-
antees. For instance, Chen et al. [54] adopts approximate Markov Decision
Processes to perform simultaneous worker quality estimation and budget al-
location. Liu et al. [127] uses variational inference for worker quality man-
agement for filtering, and Zhou we al. [202, 203]] use minimax entropy.

There has been a lot of recent work on providing partial probabilistic
guarantees or asymptotic guarantees on accuracies of answers or worker
estimates, for various problem settings and assumptions. The papers draw
from various techniques, including spectral methods [59, 183]], message pass-
ing [112]], a combination of spectral methods and message passing [[113]], or a
combination of spectral methods and EM [201]. Joglekar et al. [107]] consider
the orthogonal problem of finding confidence bounds on worker error rates.

Worker quality could also be predicted independent of their performance
on particular tasks. For example, Rzeszotarski et al. [163]] train a model with
worker behavioral information (e.g., scrolling, mouse movements, comple-
tion time) to classify suspect responses with 80% accuracy.

In practice, to ascertain worker quality, CrowdFlower [6] requests that
users provide gold standard data with which to test worker quality, and disal-
lows workers who perform poorly on the gold standard. For categorical data,
often practitioners adopt simple strategies such as asking multiple workers
each question and selecting a majority vote of responses can improve results.

Overall, crowd-powered algorithms and systems could certainly benefit
from using some of these techniques to better assess the quality of the work
provided by workers.
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Thus far, techniques for measuring worker quality as a proxy for result
quality have assumed a strong worker identity system and no cross-worker
coordination. These algorithms are susceptible to Sybil attacks [76] by work-
ers with multiple identities or workers who act in concert to avoid being
identified as spammers while finishing tasks faster than high-quality work-
ers. Sybil attacks are well-researched in systems design, but have only been
sparsely studied in the field of human computation [130]].

2.3.3 Decision Theory

Recent work has leveraged decision theory for improving cost and qual-
ity in crowdsourcing workflows. Weld et al. have used POMDPs (Par-
tially Observable Markov Decision Processes) to design optimized work-
flows [[124. 125! 146, 58] In particular, they model worker behavior, task diffi-
culty, and output quality to dynamically choose the best decision to make at
any step in the workflow (refine, improve, vote, or stop), and also to dynami-
cally switch between workflows to improve the overall “utility.”

Kamar et al. [[109] use POMDPs to study how to best utilize participation
in voluntary crowdsourcing systems, specifically, Galaxy Zoo, an astronomi-
cal data set verified by workers.

Unlike the previous papers that have no guarantees, Parameswaran et
al. [143 [141]] identify optimal policies for MDPs for filtering and rating.
However, they assume the worker accuracies are provided in advance, unlike
the papers given above.

2.4 Social Science

We now evaluate several applications and studies of crowdsourcing in the
social sciences.

There is a wealth of work on exploring social and behavioral aspects of
crowdsourcing, typically by running experiments on crowdsourcing market-
places (primarily Mechanical Turk [[10]). These include studies on how hon-
est workers are [[174], what kinds of tasks workers enjoy [97, [177], whether
crowdsourcing marketplaces are a good testbed for user studies 115} [117]],
how pricing impacts worker behavior [134,196], and how often spam or bias
occurs [100, [137]].
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One of the first researchers to study crowd platforms such as Mechanical
Turk was Ipeirotis, who offers an analysis of the marketplace [98]]. From this
study, we learn that between January 2009 and April 2010, Mechanical Turk
saw millions of HITs, hundreds of thousands of dollars exchanged, and that
the most popular tasks performed were product reviews, data collection and
categorization, and transcription. HIT prices ranges from $0.01 and $10.00,
with approximately 90% of HITs paying less than $0.10. Ipeirotis also sur-
veyed Turkers to collect demographic information. Through these surveys,
we learn that between 2008 and 2010, the Mechanical Turk population de-
mographics resembled the US internet populations’, with a bias toward more
females (70%), younger workers, lower incomes, and smaller families [99].

As crowdsourcing platforms open up to a more global population, how-
ever, we see several demographic shifts. With an increasing crowd worker
population from the developing world (in particular, India), Ross et al. show
that with changes in demographics come changes in motivations for perform-
ing work [161]]. Workers from India are more likely to see crowd work as a
primary source of income, whereas US workers treat it as an income supple-
ment or source of entertainment. This study showed that workers for whom
crowd work is their primary source of income, pay becomes a larger incentive
for performing tasks.

Mason and Watts [[134] studied the effects of price on quantity and quality
of work. They find that workers are willing to complete more tasks when paid
more per task. They also find that for a given task difficulty, result accuracy
is not improved by increasing worker wages.

2.5 Game Theory and Pricing

The algorithmic game theory community has been addressing economic is-
sues in crowdsourcing: for instance, ensuring that the marketplace is “ef-
ficient,” that there is “fairness” in worker compensation, and that workers
are incentivized to put in their best effort, or “truthfulness.” In particular,
the community has studied incentive structures in crowdsourcing market-
places [96, I52]; they have also studied how to improve the efficiency of
crowdsourcing [110]], games with a purpose [103}[102], crowdsourcing con-
tests [50], Question-Answer (QA) forums [101]], and user-generated con-
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tent [84]]. A recent survey [82] summarizes the recent developments in this
field. While our focus has been on minimizing the number of questions asked
to human workers in designing crowd-powered algorithms and systems, such
efforts may leverage research results from this community to ensure that
workers are paid a fair price for their work, and are incentivized to answer
truthfully.

2.6 Systems and Programming Models

There are three types of crowd-powered systems (note that we also cov-
ered some crowd-powered systems with novel interfaces within Section [2.2)):
full-fledged database systems that support crowdsourcing, specialized crowd-
powered toolkits targeted at specific application domains, and generic pro-
gramming toolkits that allow requesters or application developers to use
crowdsourcing within programs. We will cover full-fledged database systems
in Chapter 4, we cover the rest here. A tutorial on crowd-powered systems
can be found in [[73]].

2.6.1 Basic Programming APls

Crowdsourcing platforms such as Mechanical Turk offer low-level interfaces
for posting HTML forms or iframes around HIT content that is hosted else-
where. The APIs allow requesters to generate new HITs, specify a price per
HIT assignment, and set a number of assignments per HIT. Requesters man-
age their own multi-HIT workflows, poll the API for task completion, and
gauge the quality of the responses on their own.

Mechanical Turk-style APIs are akin to filesystem and network APIs on
which databases and other data and information management platforms are
built. Building robust crowdsourced workflows that produce reliable, error-
free answers on top of these APIs is not easy. One has to consider how to
design the user interface (an HTML form) the crowd worker sees, the price
to pay for each task, how to weed out incorrect answers, and how to deal with
latency on the order of minutes to hours of various HITs that crowd-powered
programs generate. Several startups, such as CrowdFlower [6] and Mobile-
Works [21] aim to make crowdsourced workflow development easier by of-
fering simplified APIs (CrowdFlower) or task-specific ones (MobileWorks).
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2.6.2 Generic Toolkits

Further up the stack are crowdsourced language primitives, supported typi-
cally by generic toolkits that allow application developers to leverage crowd-
sourcing within code. However, none of these toolkits provide the function-
ality of optimization. In effect, it is up to the programmer or application de-
signer to manually optimize the workflow while using these programming
toolkits.

Little et al. present TurKit [[126]], which supports a process in which a
single task, such as sorting or editing text, might be implemented as multiple
coordinated HITs, and offers a persistence layer that makes it simple to iter-
atively develop such tasks without incurring excessive HIT costs. Much like
low-level parallelization frameworks such as pthreads [47]] allow developers
to fork multiple tasks off to workers in parallel, TurKit offers several paral-
lelization primitives. Like low-level threading primitives, however, low-level
crowd programming libraries require care in correctly using fork/join-style
parallelization primitives.

At a higher level of abstraction, toolkits such as CrowdForge [116] and
Jabberwocky [22]], and Automan [32] help specify crowdsourced workflows.
CrowdForge by Kittur et al. provides a MapReduce-style programming model
for task decomposition and verification. Jabberwocky[22] from Ahmad et
al. provides a full stack: Dormouse for low-level crowdsourcing primitives,
ManReduce for a MapReduce-style task decomposition, and Dog as a Pig-
like programming environment [19] for specifying workflows at a high level.
Finally, systems like Legion [121] make it easier for developers to build appli-
cations that integrate crowd worker feedback with low latency. Automan [32]
enables application developers to leverage crowdsourcing via subroutines in
regular programs.

As the crowdsourced work becomes more complex, researchers have pro-
posed more sophisticated task workflows and worker organization schemes.
The literature thus far on complex work has focused more on building novel
workflows than on evaluating their quality. This research proposes multi-
stage workflows to break work into manageable subtasks [119], maintain
global constraints across multiple tasks [200], iteratively refine previous
workers’ efforts [126]], or assemble teams of expert workers to collaborate
on difficult or creative tasks [159]. Worker hierarchies have been used to
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organize crowdsourced managers and employees in the context of micro-
tasks [139] and more complex work [[118]].

2.6.3 Domain-Specific Toolkits

There are other domain-specific systems that gather data from crowds:

e Reference [51] leverages crowdsourcing for feedback in information
integration pipelines. Other work has addressed algorithmic questions
underlying which questions to ask in the information extraction set-
ting [61} [142]). pipelines.

e CrowdSearcher [41 42| 43| provides a declarative platform to leverage
the user’s social network as well as QA forums to solve user tasks. In
recent work, CrowdSearcher has been enhanced with active rules that
enable better user-driven control of crowds.

e Trivia Masster provides a declarative approach to leverage humans for
data cleaning [72].

e DataSift explores workflows for crowd-powered search [148], [147]].
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An Overview of Crowd-Powered Algorithms

In this chapter, we cover the state of the art in algorithms that take human
worker input into account. A common abstraction adopted by the work on
crowd-powered algorithms is that crowd workers act as data processors,
much like traditional processors within computers.

We will first introduce the notion of crowds as data processors and pro-
vide an executive summary of the rest of the chapter. We will then survey
the literature on crowd-powered algorithms, and close with a summary of de-
sign choices and confounding factors in creating crowd-powered algorithms.
We note that since there is a large diversity in the types of algorithms that
researchers have designed, for any given problem, we will not delve into spe-
cific algorithmic details, and instead will describe the high level ideas. We
encourage readers to look up the corresponding papers to find out more.

In this chapter, we do not describe the target use cases for these algo-
rithms or how they are integrated into other computation; we will cover these
aspects when conducting surveys of users of crowdsourcing in industry, in
Sections and [8.3] respectively. In brief, crowdsourcing could be used as
a precursor to machine learning (i.e., to generate training data), integrated
with machine learning (i.e., via active learning), or after machine learning, to
verify the output of machine learning or automated algorithms. Alternatively,

28
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crowdsourcing could be used in a stand-alone manner, not integrated with
machine learning in any way.

3.1 Crowd Workers As Data Processors

Traditional processors support both arithmetic operators (e.g., adding, sub-
tracting, multiplying, or dividing large numbers) and logical/boolean opera-
tors (e.g., less than, greater than, equal to, or AND, OR, and NOT). Each of
these is defined as a unit operation within the processor’s instruction set. It is
thus very clear what a processor can and cannot do, and is explicitly specified
in the instruction set of the processor—this is a conscious design decision
that every processor manufacturer must make.

Given that crowd workers are complex, creative beings, we are not yet
sure what crowd workers are capable or not capable of answering within
a unit time. Thus, the human “instruction set” is largely unknown. Crowd
workers are certainly able to perform arithmetic and logical/boolean opera-
tions, especially on small numbers. Crowd workers have a harder time than
computers, however, performing operations on larger numbers.

On the other hand, crowd workers may be able to quickly perform oper-
ations on entities other than numbers (something traditional processors are
incapable of doing). For instance, crowd workers can operate on images,
videos, or text; they can quickly compare two images, for example. Here is
an incomplete list of operations that crowd workers can complete on images
alone:

e compare two images on some aspect, e.g., pick the prettier picture,
e rate an image on some aspect, e.g., rate how funny a meme is,
e cvaluate a predicate on an image, e.g., is this an image of a cat,

e categorize an image into categories, e.g., is this an image of an animal,
a vehicle, or a fruit,

e count items in an image, or count the number of images obeying some
property, e.g., count the number of images that have a cat in them, and

e sort a number of images on some aspect, e.g., sort 5 images based on
the quality of each image.



30 An Overview of Crowd-Powered Algorithms

The “performance” of a crowd worker on an operation set of items in ex-
change for some reward can include several factors. The time a crowd worker
takes and the correctness of the answers they provide depend on multiple
factors, including

e the specific crowd worker under consideration: some crowd workers
may be more effective, more accurate, or faster than others at a task, or
may have some inherent biases;

o the items under consideration: operations on some items may be harder
than others;

e the reward under consideration: higher rewards may induce quicker or
more thorough responses; and

e the operation under consideration: different operations may be harder
or simpler than others.

For the purposes of crowd-powered algorithms, we focus on operations that
can be done “quickly,” i.e., within a few seconds or minutes. These operations
are what we call microtasks, and this class of operations does not include
longer and more elaborate tasks, such as writing an essay—those tasks are
called macrotasks. In this chapter, we mostly consider microtasks because
macrotasks are less amenable to optimization, and less applicable in a large-
scale data processing scenario.

Even though we present a number of aspects that the literature on crowd-
powered algorithms do take into account, modeling crowd workers as data
processors is certainly a gross simplification: crowd workers are incredibly
complex, and simple models or abstractions are likely to not be accurate de-
pictions of human behavior. Nevertheless, even with these simple models we
will find that (a) the resulting problems are still challenging to reason about,
and (b) even the simple models often lead to substantial benefits in practice.
It remains to be seen if more intricate abstractions or models of human in-
volvement will provide additional benefits.
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3.2 Executive Summary

Current Progress. Given the abstraction of humans as data processors, there
have been a number of papers written on using relatively simple data pro-
cessing operations, primarily centered on pairwise comparisons and predicate
evaluations. The predicates are not always boolean, but also more complex
ones like rating (e.g., rate an item from 1—S5). This work includes progress
on sorting, max, and top-k [65) [181} [89]], where the focus is primarily on
pairwise comparisons, but also expands to multi-way comparisons and pred-
icate evaluations [[132]. Further work on filtering and finding [[143} [167]] and
categorization [146]] focuses on predicate evaluations. A good body of work
has developed around entity resolution and clustering [189, [86], where the
focus is also on pairwise comparisons. Some papers opt for more complex
human data processing abstractions, such as work on counting [130]], enu-
meration [[179], or association rule discovery [27].

Design Choices and Objectives. Given a crowd-powered algorithm design
problem, an algorithm designer needs to take into account a variety of factors,
such as:

e The tasks that will be completed by workers, e.g., predicate evalua-
tions, comparisons.

e The amount that workers will be compensated for completing each
task, also called the reward in the literature.

e The mechanism used to reason about errors made by workers. One op-
tion is to ignore errors. Another option is to assume that all workers are
equally “good,” and to take a majority vote. Other more sophisticated
mechanisms are possible as well.

e The mechanism used to reason about the time taken by workers to com-
plete tasks. Typically, workers are assumed to take the same amount of
time per task, which may not be realistic.

Given these choices, the algorithm designer can then optimize for various
objectives, including optimizing for expected or worst case monetary cost,
accuracy of answers, and latency of completion.
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Other Confounding Factors. In designing algorithms, there are a range of
factors typically ignored by algorithm designers, but are also important; we
expect these factors will be explored more in future algorithm development
in this area. This includes

e Task-specific factors, including vastly varying difficulties of tasks, the
impact of batching tasks together on the quality of answers, and inter-
face design and testing, which is largely seen to be a dark art.

e Machine-learning factors, including the incorporation of information
from primitive machine learning algorithms, as well as the integration
with active learning techniques.

e Human-specific factors, including the effects of fatigue, boredom,
and/or experience of workers as they attempt more tasks, and varying
the reward on the quality of answers.

3.3 A Survey of Crowd-Powered Algorithms

We now describe a survey of the literature in crowd-powered algorithms. We
organize this literature in subsections corresponding to different fundamental
algorithms that need to be revisited when the unit operations are performed
by crowd workers instead of computers. Necessarily, since crowd-powered
algorithms is a rapidly evolving field, we may have missed out on some of
the newer references. This section is not meant to be exhaustive, but more
illustrative of the breadth of the work in crowd-powered algorithms.

3.3.1 Sorting, Max, and Top-K

Here, the goal is to either sort a number of items, find the maximum (or
best) item, or find the best k£ items. This could be relevant, for instance, if
we wanted to sort a set of tweets on how positive they are toward a certain
brand, or if we wanted to find the best profile photograph to be uploaded on
a restaurant website.

At a high level, most of these algorithms use some form of pairwise com-
parison questions, whose results can be visualized as a directed graph be-
tween items. The algorithms generally focus human attention on areas of high
“uncertainty.”
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Guo at al. [89]] describe online algorithms to select the best next pair-
wise comparison question to ask the crowd in oder to identify the max. They
formulate this as a maximum-likelihood problem, and show that even just
computing the maximum given a number of pairwise comparison votes is
#P-Hard.

Marcus et al. [132] study crowd-powered sorting: they empirically find
that a hybrid algorithm that uses ratings to get a rough idea of how “good”
items are, and then pairwise comparisons between items in the same rating
class, needs much less cost than an algorithm that uses ratings alone or pair-
wise comparisons alone.

Davidson et al. [[65] design a pairwise-comparison-based structured tour-
nament for crowd-powered top-k and maximum problems, and demonstrate
that their algorithms are optimal under certain assumptions about worker er-
ror rates. Venetis et al. [181} [180]] also study tournament-based max algo-
rithms, and identify “good choices” for the fanout of the tournament tree
under various error models. Polychronopolous et al. [[152] devise algorithms
for top-k by merging lists in a manner similar to the quick-sort algorithm.

3.3.2 Filtering, Rating and Finding

Here the goal is to either identify which out of a set of items satisfy a certain
predicate or condition (filtering), or assign every item in a set of items a score
(rating), or identify & items from a set of items that satisfy a certain predicate
or condition. For instance, filtering could be relevant, say in content moder-
ation, when we want to identify all photos that contain inappropriate content
from a large dataset of photos; rating could be relevant when associating ev-
ery web search result a score representing how appropriate it is for a given
search query; finding could be relevant when we want to use crowd workers
to identify 20 travel photos from a dataset of 10,000 photos to display on a
travel website.

Typically, the algorithm to beat for filtering or rating is the “majority
vote”: asking a fixed number of workers to provide a score or value for each
item, and then accepting the majority response as the true score or value for
each item. Most of the algorithms designed for these problems reduce cost
and increase accuracy relative to majority vote by dynamically reducing the
number of workers assigned to items where there is clear agreement between
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workers (so additional opinions are not necessary), and increasing the number
of workers assigned to items where there is disagreement between workers.

Parameswaran et al. [143|[141] propose the use of Markov Decision Pro-
cesses to solve the problem of filtering and rating by optimally trading off
cost and quality. They show that often simple techniques such as majority
vote can perform very poorly especially when applied to large numbers of
items. Liu et al. [[128]] use binary search to identify the right number of work-
ers to ensure a certain degree of accuracy, while Cao et al [48]] carefully select
a set of workers that optimally balance cost and quality.

Das Sarma et al. [167]] demonstrate how, for finding, it is not simply suffi-
cient to use techniques optimized for filtering (in fact these can be arbitrarily
expensive). Here, the emphasis is on focusing on a small set of items that are
most likely to be useful in satisfying the condition. They propose algorithms
that best trade-off monetary cost and latency, given a threshold on accuracy.

The work on filtering and rating in this section is related to the work
on worker quality estimation and management as described in Section[2.3.2]
There, the primary emphasis is on estimation of worker quality; here, the
primary emphasis is on how to best exploit worker quality estimates to re-
duce cost and provide guarantees on accuracy, assuming that worker quality
is given as a black box. That said, there are some papers that jointly try to
estimate worker quality and reduce cost; these papers are described in Sec-
tion

3.3.3 Entity Resolution and Clustering

There has been some work on using crowdsourcing to assist Entity Resolu-
tion [78]], i.e., the task of identifying duplicate entities in a set of entities.
This work has focused primarily on combining machine learning methods
with crowdsourcing; crowdsourcing is typically used for verifying predicted
matches [189, 68l [85]]; in some cases, it is also used to provide training data
for matching algorithms [138} [192] [85]]. Active sampling [34] addresses a
similar problem, but makes use of a classifier that is learned using human
input via active learning.

Crowd-clustering [86] tackles the question of what tasks crowd workers
should be used for when clustering a large set of items. Data Tamer [173|]
uses a crowd of domain experts to resolve uncertain examples in schema
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integration, data cleaning and entity resolution. Tamuz et al. [175] address
the problem of identifying perceptual similarity (by asking questions such as
“is a more similar to b or ¢”) using the crowd, while Heikinheimo et al. [94]
identify the “median” or the “centroid” item in a set of items.

At ahigh level, most of these algorithms represent both prior beliefs about
similarities between pairs of items, as well as crowd responses as weighted
edges in an undirected graph between items, with the goal of verifying uncer-
tain edges, or splitting the graph into clusters of high density.

3.3.4 Categorization

Here, the goal is to design algorithms for categorizing items (e.g., images
or products) into a taxonomy (e.g., concept taxonomy or product hierarchy,
respectively).

Parameswaran et al. [[146]] focus on questions of the form “does this item
belong to a specific category?” Asking questions at category nodes close to
the root are more likely to receive a positive answer, while asking categoriza-
tion questions close the the leaves are more likely to receive a negative an-
swer. Asking categorization questions in the “middle” nodes may give more
information. They articulate three key dimensions: the type of taxonomy, the
objective (eliminate as many nodes or precisely find the target category), and
number of target categories (one or many), and provide efficient solutions.
Chilton et al. [55]], and Bragg et al. [44]] describe techniques to crowdsource
the creation of taxonomies.

3.3.5 Counting, Estimation, and Enumeration

Count-based aggregates are fundamental to database operation. In their sim-
plest form, they help users summarize row aggregates (e.g., “How many em-
ployees do I have?”). In their most complex, they provide database optimizers
with selectivity estimation on how many rows have a given property. Mar-
cus et al. [130] study how to benefit from the crowd when the items being
counted are challenging for computers to interpret (e.g., “How many photos
contain smiling men with red hair?”’), and how to benefit from the concept of
pop-out [190,1197] from the visual perception literature to batch process such
questions with crowd workers.
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The goal of enumeration is to recover a set of related items using
the crowd (e.g., ice cream flavors, countries, restaurants). Trushkowsky et
al. [179] use statistical techniques (inspired by the coupon collector problem)
to estimate exactly how many times crowd workers must be asked to provide
items before the entire set is collected. Recent work aims to improve on these
techniques by leveraging a hierarchy on attributes [158]].

Crowd-Fill [151] addresses a similar problem in a relational setting,
where multiple concept types can be crowdsourced. A recent paper demon-
strates how decomposition can be used to count objects in images, leading to
an optimal competitive under certain assumptions [[166].

3.3.6 Other Algorithms

Amsterdamer et al. [27] use crowd workers to verify data mining “association
rules,” Lotosh et al. [[129] use crowd workers to generate optimized plans
for workflows, and Demartini et al. [69] use crowds to verify entities and
relationships to enable better pattern matching for search queries.

3.4 Design Choices for Crowd-Powered Algorithms

Now that we have the abstraction of crowd workers as data processors, and
have a motivating set of crowd-powered algorithms, we can describe typical
design choices and variations in crowd-powered algorithms. To accomplish
this, we contrast the design choices of two papers on filtering [[143]] and sort-
ing [132], referring to other papers where it is helpful.

3.4.1 Unit Operations: Controlled by Algorithm Designer

To setup the problem, the requester considers the types of operations and
feedback that crowd workers can provide. For instance, for filtering [143]],
the only operation that can be performed by crowd workers is a predicate
evaluation, essentially answering YES/NO depending on whether whether an
item satisfies a filter or not.

The space of operations that can be answered by the crowd to solve a
given problem is generally small. Whereas filtering considers only a single
predicate evaluation operation, for sorting [[132], two different operations are
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suggested. In the first, a crowd worker provides a rating for each item, allow-
ing us to compare items by comparing their aggregate ratings (e.g., average
1-5-star funniness rating). The second operation outright asks crowd workers
to compare two or more items, allowing a more direct form of sortability.

3.4.2 Cost Model: Controlled by Algorithm Designer

The next aspect a crowd-powerd algorithm designer must consider is the re-
ward for operations performed by the crowd. The simplest design choice for
the cost model is that the reward is fixed for each task. This is the setup
considered in both the filtering and sorting papers, and is often the standard
practice for industry users. There are three ways the cost model may vary:

e The costs for two different operation types are different. For example,
a comparison operation might cost more than a rating operation, since
the former may require understanding of two items, while the latter
only requires the understanding of one item.

e When the operations performed by crowd workers are on multiple
items at a time, the cost may vary depending on the number of items.
For example, comparing 10 items at a time might be twice as expensive
as comparing 5 items at a time. This cost model is employed, for ex-
ample, in a paper on identifying the largest elements in a dataset [181]].

e The cost could depend on the human worker who is answering the task;
a more competent worker may require higher compensation than a less
skilled worker. This cost model is considered for filtering in [141]]. In
MTurk, there are different categories of workers (with different quali-
fications) who are typically paid differently.

3.4.3 Error Model: Hidden Parameters

The next aspect affecting the design of crowd algorithms is the model of
error, through which we capture the likelihood that crowd workers may give
incorrect answers. Unfortunately, this is not something the algorithm designer
has control over (unlike cost and latency). If the algorithm designer does not
wish to worry about how to reason about the errors made by workers, then
they simply use an aggregation method, such as getting the answers of 3 or
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5 different human workers, and then taking the majority. Once the majority
is taken, the answer is assumed to be correct. However, this ignores crucial
information about the answer inherent in the responses. If all 5 workers agree
on a boolean value being YES instead of NO, then this is a much stronger
statement than if 3 workers thought the boolean value was YES and 2 thought
it was a NO. In the first case, we have a lot more confidence in the answer.
Furthermore, we may obtain conflicting information from the workers: it may
be the case that majority of the workers think A is better than B, majority of
the workers think B is better than C, and majority of the workers think C
is better than A. Now, there is no easy way to resolve this conflict. Thus, the
research literature has considered various ways of reasoning about the worker
errors, and figuring out ways of correcting them.

Typically, most papers in the research literature use an appropriate error
model that is amenable to analysis, train the model on available data by identi-
fying the best fit for the hidden parameters in the error model, and then design
algorithms while being cognizant of the error model. Various algorithms and
error models can be tested to see if they lead to tangible benefits in practice:
a model that does not yield benefits in practice is useless. Picking an error
model is an art—similar to picking a class of machine learning model prior
to identifying appropriate parameters on training data. Prior work has ana-
lyzed and designed crowd algorithms under various error models, described
below:

e The weakest assumption made by algorithms is to make no assumption
about crowd worker error rates. This is the approach taken in the sorting
paper. The advantage of this error model is that analysis is easy; the
disadvantage is that not much can be said about the eventual accuracy
of the algorithms.

e The simplest error model is that every human worker has the same
probability of error on every operation on every item. This is the error
model adopted in the filtering paper.

o A slightly more complex error model states that every crowd worker
has a distinct probability of error for each operation across different
items; this is the error model adopted by [141]].
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Virtually no papers consider more intricate error models, but they certainly
exist:

e The error rates of crowd workers vary as they answer more questions.
This certainly happens in practice, since crowd workers may end up
being more fatigued or distracted over time, or get more experienced
in answering questions.

e The error rates of crowd workers depend on the item being operated on.
While [141] does consider this to a limited extent, this area is largely
unexplored.

While work on crowd algorithms focuses on simple, analyzable error models,
the work on worker quality estimation (considered in Section considers
a variety of more intricate models (e.g., different workers have different ac-
curacies; workers have different accuracies on each task; tasks have different
difficulties, etc.): however, none of these models come with guarantees; i.e.,
the EM-like [66,100] algorithms that these papers use lead to locally optimal
solutions. The papers with guarantees, such as [[112], use the assumption of
fixed worker error rates independent of item. For the most part, there has been
no work on incorporating sophisticated error models in crowd algorithms.

We emphasize that worker quality estimation is an essential component
of crowdsourcing, but the perspective we adopt in this book is that worker
quality estimation is a “black box” that we apply to our algorithms; the em-
phasis in this chapter, is, for example, on how best to use the estimates from
this black box. In the future we expect more papers to do worker quality esti-
mation and data processing (via crowd algorithms) simultaneously.

3.4.4 Latency Model: Hidden Parameters

Like the error model, the latency model is a hidden aspect that affects the
design of crowd-powered algorithms. Latency refers to the time taken for
crowd workers to complete tasks. Latency depends on factors such as the re-
ward promised to crowd workers, as well as the time of day, as both affect the
distribution of workers willing to work on tasks. It also depends on the oper-
ation performed, and the items being operated on. Prior work has considered
various models for latency:
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e Many papers do not consider latency as an optimization objective at all,
recognizing that the primary concern is minimizing cost (representing
real money investments) and maximizing accuracy (representing the
quality of the results that are consumed by the next step of the data
processing pipeline); as long as the tasks are eventually completed, that
is sufficient.

e Many papers model latency for every operation performed by crowd
workers to be the same and fixed, and sometimes assume that as many
operations as desired can be performed by crowd workers all in par-
allel. Thus, in this case, the latency of an algorithm is directly propor-
tional to the number of round-trips to the crowdsourcing marketplace—
with the computation cost being completely ignored. This model makes
sense because the the latency of crowd worker responses is typically
much higher than automated computation. This model is adapted by
papers on finding [[167]] and categorization [[146].

o A couple of papers model the latency as being inversely correlated with
the reward on offer [81,(93]].

Generally, the literature to this point has focused on modeling error more
highly than modeling latency. This in part because latency is a moving target
even on a single marketplace, and it is challenging to get reproducible and
explainable results.

3.5 Optimization Objectives

Now that we have described the various aspects affecting the design of crowd
algorithms, we now describe typical objectives that research in crowd algo-
rithms typically optimizes for. Typically, the objectives optimize for cost and
at least one of latency, accuracy, or both. The objectives vary in form:

o Complete vs. Incomplete: One type of goal involves a fixed set of tasks
that need to be completed, and we want to minimize cost, error, or
latency. There are many examples of this type: The papers on filter-
ing [143]] and sorts [132]]: minimize expected cost to finish filtering or
finish sorting, given an expected accuracy threshold. On the other hand,
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Gao et al. [81]] and the paper on finding [[167]] minimize expected cost
to finish a set of tasks or find k desired items, given a fixed deadline.

Yet another type of goal involves a fixed set of tasks, but does not spec-
ify if all of these tasks need to be completed, just that “as much as possi-
ble is completed”: For example, enumeration [[179], max-finding [89]],
categorization [146l, and crowd-fill [151] aim to gather as many an-
swers as possible, improve estimates on the best item, minimize cat-
egorization candidates, and enumerate as many unknown data items
respectively, within a specified budget.

o Worst-case vs. Expected Case: Another common decision point is
whether the optimization goals are of the worst-case or of the expected-
case variety. If there is an intricate accuracy model (with workers mak-
ing mistakes with some probability), then typically, at least some or all
of the objectives are of the expected case variety. For example, there
may be an expected bound on accuracy, or an expected bound on cost.

3.6 Other Confounding Factors

There are many other factors at play that typical crowd algorithms papers
do not take into account. This is not because these factors are not important,
but because they are hard to analyze and provide guarantees for. We expect
that taking these factors into account in designing crowd-powered algorithms
would provide even more effective algorithms.

3.6.1 Task-Specific Factors

Difficulty. In practice, not all questions that are asked of crowd workers are
equally easy. For example, comparing two items that are very similar is a
lot harder than comparing two items that are far from one another. For sort-
ing, there has been a limited exploration of difficulty, e.g., [23}165]], precisely
capturing the idea described above. There have also been some empirical
studies demonstrating how difficulty can affect error rates. In one empirical
study [180\ [166[], the number of dots in an image is varied, and task involves
counting the number of dots. As the number of dots increases, the error rate
of the estimate provided by crowd workers also increases.
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Unfortunately for algorithm designers, the difficulty of a task is typically
not known up-front; we can only infer that a task is difficult if workers end up
disagreeing on its answer—we make the assumption that given the inherent
difficulty, workers provide independent answers. If workers make correlated
errors, then this is a lot harder to detect and automatically correct for.

Batching. Typically, on marketplaces like Mechanical Turk, requesters will
batch a set of questions about different items into a single task. This has
multiple advantages: by batching, the requesters can pay a higher amount,
and therefore attract workers; workers can read instructions once and provide
answers to a set of tasks all in one go; and lastly, workers have a bit more
context as to the diversity of tasks. For example, if the goal is to rate a set
of photos on a scale from 1—5 on how picturesque they are, having some
context by providing additional photos can help crowd workers better gauge
individual photos.

Unfortunately, batching also introduces bias, especially when datasets are
skewed: if the true rating of the set of photos displayed to a crowd worker is
1, then the worker may incorrectly mark a few as 2 or 3 because they do not
expect all of them to be 1. There has been limited work on mitigating bias
introduced by batching [204].

Interface Design and Testing. The design choices that go into a particular
interface a worker sees can significantly improve worker satisfaction and ef-
ficiency and minimize worker errors. Making the appropriate design choices
is challenging, requiring that designers take into account factors such as pop-
out [[190]] and anchoring [[115]. One paper that shows how perception-related
factors like pop-out can affect result quality is on counting items in a set with
a given property [179]]. In it the authors find that crowd workers can better
estimate high-pop-out factors such as image color more effectively than they
can estimate low-pop-out factors such as the categorization of a block of text.

3.6.2 Machine Learning-Specific Factors

Prior Information. In many cases, we may be able to use simple automated
mechanisms (such as machine learning algorithms) to give us prior probabil-
ities for various tasks. For example, for content moderation of images (i.e.,
checking if images depict content inappropriate for children), we may be able
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to use color histograms to detect skin tone to give a prior probability for
different images. Very few papers take prior information into account. One
such paper [[141] treats the the prior probability as just another worker with a
known probability of error. Other ways of reasoning about and incorporating
prior information may be more powerful and may need to more benefits.

Integration with Active Learning. The field of Active Learning [[169] con-
cerns itself with the identification of training examples to be labeled by
crowd workers to identify a “good” machine learning model. Typical goals
for crowd-powered algorithms are to classify, categorize, or sort the tasks at
hand. However, there has been no work trying to integrate the learning of a
good machine learning model while at the same time performing the tasks at
hand (with desired accuracy or cost). The work in these two communities has
largely proceeded independently of each other. There has been initial work in
this space [[138]], but much more remains to be done.

3.6.3 Human-Specific Factors

Boredom, Laziness, and Experience. Most crowd-powered algorithms do
not take into account many human-specific factors. For example, human
workers will often avoid doing work if they can; they will “satisfice” [168]
by doing the least amount of work necessary. Workers have been known to
answer questions without reading instructions completely, or by randomly
guessing. Workers are also affected by boredom and fatigue, especially when
they have answered many questions of the same type. In addition, workers
often get more effective at tasks over time: state of the art crowd-powered
algorithms do not take experience into account. Lastly, we have heard reports
of human workers colluding to all provide the same answer for a task [[179]:
collusion is very hard to detect automatically and correct for.

Biases. Bias is another important factor affecting crowd-powered algorithms.
For example, if we have workers answering rating questions, e.g., rate a photo
from 1-5, there will be workers who are more ‘“stingy” or more “lenient.”
Taking into account these biases and correcting for them is important. While
there has been some work in taking individual worker biases into account,
many papers in crowd-powered algorithms assume a uniform error rate for
all workers, thereby ignoring all worker-specific bias.
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Incentivization. While there has been some work in developing appropri-
ate incentive mechanisms [|82]] for crowd workers, these learnings have not
been integrated into the design of crowd-powered algorithms. Appropriate
incentivization is important to ensure not just that workers are compensated
according to the level of effort, but also entice them to put in more effort and
not simply randomly guess.

3.6.4 Marketplace-Specific Factors

State of the Marketplace. A major unaccounted for factor in crowd-powered
algorithms is the state of crowdsourcing marketplaces. The composition of
the workers in a marketplace varies widely with the time of day, as well as
the day of the week, month, and year. For instance, studies have reported
getting vastly different accuracies and latencies for their tasks if they deploy
the tasks at different times during the day. This is probably due to the shift-
ing of the demographic constitution of the marketplace. Anecdotal evidence
also suggests that these effects are periodic: latencies on weekends are much
higher than latencies during the week. Furthermore, the accuracies and laten-
cies have also changed in various marketplaces over the years. These factors
certainly affect the cost, accuracy, and latency of crowd-powered algorithms.
Further, these factors make it challenging to benchmark, compare, and vali-
date the performance of crowd-powered algorithms.

Specific Marketplaces. The other issue with current research on crowd-
powered algorithms is that it is typically tailored to and validated on a Me-
chanical Turk-like marketplace. There are many marketplaces in existence,
and further, there are many internal marketplaces (as we will see in Sec-
tion[5.1)). These algorithms do not directly apply to these marketplaces, since
they obey very different characteristics. For example, on Upwork [17] it is
common to pay workers per hour instead of per task.

3.7 Summary

To summarize, while there has been a lot of interesting and impactful work
done on crowd-powered algorithms, much remains to be done. In particular,
reasoning about the factors described in Section [3.6] will lead to significant
savings in latency and cost, and contribute to much more accurate results.
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An Overview of Crowd-Powered Systems

Embedding crowdsourcing in large-scale applications or workflows is often
very time consuming and challenging for programmers or application devel-
opers. The onus falls on these individuals or teams to manage which tasks are
created and evaluated by humans, how they are priced and how the interfaces
look, how to deal with discrepancies in the human answers, and how these
answers are combined with other information or other parts of the workflow.
While the algorithms described in the last chapter do address portions of this
problem, they still do not solve the problem holistically.

Thus, recent work has identified the need for an end-to-end “declarative”
approach: the programmer specifies which tasks need to be evaluated by hu-
mans, and the system transparently optimizes and manages the details of the
evaluation, often while using the algorithms described previously as build-
ing blocks. This situation is analogous to data management, where while it is
certainly possible to hand-optimize the execution of a data processing task, it
turns out to be easier and more efficient to allow users to specify queries at a
high level, and empower the database (in this case) to do the optimization.

The overall optimization objectives for declarative crowdsourcing work-
flows are similar to those of the individual algorithms they include: typically
one looks to optimize cost, accuracy, quality, and completeness of the task.

45
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Declarative crowdsourcing systems come in many flavors, mirroring sys-
tems in data management:

o Imperative Toolkits. Analogous to imperative programming APIs,
there are some toolkits that essentially act as a wrapper over an ex-
isting crowdsourcing marketplace, making it easier to access crowd-
sourcing marketplaces, but ultimately leaving optimization, the evalu-
ation of tasks, and redundancy in the hands of the application program-
mer. TurKit [126], perhaps the first toolkit of its kind, is an example
of an imperative toolkit that was designed as a wrapper over Mechan-
ical Turk. TurKit primarily focused on a workflow called iterative im-
provement, considering simple one-item-at-a-time tasks like text edit-
ing or design, and did not do much in the way of optimization. In other
words, the designer still had to hand-optimize systems like TurKit. Au-
toman [32] is a more powerful version of TurKit, wherein application
developers can leverage crowdsourcing via subroutines in regular pro-
grams. Once again, the control flow logic is something the application
designer has to decide on.

e Mixed Imperative-Declarative Systems or Toolkits. Analogous to
recent data processing systems such as MapReduce [67]] and Pig [140],
there are some systems that enable programmers to mix imperative and
declarative specification. While the control flow is still imperative, the
individual building blocks are declarative. In such cases, the system is
given the power to optimize the individual building blocks of the work-
flow. Jabberwocky [22] and CrowdForge [[116] both exemplify this type
of system by enabling application developers to write parallel data pro-
cessing work-flows using humans.

e Declarative Systems. Analogous to traditional relational database
management systems, there are three declarative systems that allow
application developers to leverage crowd work by declaratively spec-
ifying goals at a high level, while the systems perform the underly-
ing optimizations. The three primary systems are: CrowdDB [[79, [80],
Qurk [131} 133,132, [130], and Deco [145} (144149 [150].

In this chapter, we will focus on the third category of declarative systems. At a
high level, all of these systems treat human workers as both a data source and
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Figure 4.1: Typical Crowdsourcing System Architecture

a data processor—both bringing in new data into the system, and processing
the existing data.

There are also a number of domain-specific declarative/imperative sys-
tems for crowdsourcing, which are covered in Chapter 2]

We begin with an executive summary of the chapter, then provide details
about the individual declarative crowdsourcing systems surveyed.

4.1 Executive Summary

We now provide an executive summary of this chapter.

All declarative crowdsourcing systems have an architecture that looks like
Figure d.1] All systems allow users to pose queries and get results (top of the
figure). The query optimizer consults the list of access methods available to
gather data from the crowd to cost different plans on monetary cost, latency,
and accuracy. The query executor interfaces with the task manager to issue
tasks and get results. The task manager in turn compiles tasks into a format
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that is issued to the marketplace, and returns answers, whenever available, to
the query executor. Lastly, the query executor interfaces with the quality man-
ager to ascertain the accuracy of the returned results, and issues additional
tasks if need be. The quality manager might maintain statistics about work-
ers’ contribution history in order to identify work quality trends. All compo-
nents of the system have access to a backend storage system containing data
(both crowdsourced and directly input into the system), schema information,
and statistics about tables.

The three primary declarative crowdsourcing systems are CrowdDB,
Deco, and Qurk. While all three systems use an architecture similar to Fig-
ure they differ in various ways. We have summarized the various design
choices made by these systems in Table[d.1]

In particular, the three systems differ in the kind of data crowdsourced,
the way data is represented and combined with existing data (Data Model
& Integration Mechanism), the way human errors are captured and reasoned
about (Error Model), the way we gather data from human workers (Access
Patterns), the amount the database needs to treat crowdsourced data and non-
crowdsourced data differently (Database Awareness), the simplicity of under-
standing of end users (Simplicity), the extent to which optimization and ob-
jectives are supported (Optimization Ability & Objectives), and the extent to
which users are allowed to specify how much data needs to be crowdsourced
(Query Specification).

At a high level, CrowdDB opts for a simple, easy-to-understand design.
This simplicity, however, could lead to performance penalties (high cost,
time, or error) for some types of queries. Deco opts for a general, more so-
phisticated design, leading to more optimization opportunities for some types
of queries. Qurk, unlike CrowdDB and Deco, opts to capture crowd-specific
functionality outside the database via UDF invocations, making it less neces-
sary to modify the internals of the database, but at the same time, sometimes
leading to limited query optimization.

While the three systems have made significant headway toward facilitat-
ing declarative crowdsourcing, there are still some unresolved issues, war-
ranting further investigation in future work. In particular, none of the systems
support full query optimization. This includes, but is not limited to: (a) choos-
ing amongst a collection of query plans for executing the same query by being
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System
Comparison CrowdDB Deco Qurk
Integration Mechanism  Data Source Data Source UDF

What is Crowdsourced

Data Model

Error Model

Access Patterns

Database-Awareness

Simplicity

Optimization Ability

Query Specification

Objectives

Typical Use-cases

New data and operations
on existing data

Cleansed data stored:
Database view is the user
view

In-built

In-built (Primary key to
crowd columns or entire
crowd table tuples)

Database aware of crowd
tables and  columns,
CNULL values

Easy to understand

Limited by way of stor-
ing cleansed data, fixed
error resolution mecha-
nisms

No CNULLSs in outputed
data; LIMIT clause

No explicit user control
of objectives

Filling in missing values;
data gathering

New data and operations
on existing data

Dirty data stored:
Database view is not the
user view

User-specified (Resolu-
tion rule)

User-specified, flexible

Database ~ aware  of
crowdsourced data,
different semantics

(fetch-resolve-join)
Complex data model and
semantics

Not limited

constraints in  SQL
queries: AT LEAST /
MIN COST / MIN TIME

Limit the unspecified
constraint (cost or time)

Filling in missing values;
data gathering; data pro-
cessing

Primarily operations on
existing data

Dirty or cleansed data
stored: Database view is
the user view
User-specified
biner function)

User-Specified, Flexible

(Com-

Limited awareness: func-
tionality captured in UDF

Easy to understand

Limited by way of lack
of database awareness of
crowdsourced data (less
relevant for more recent
papers)

Queries with UDFs
User explicitly  con-
trols redundancy and

cost, database does not
optimize this process

Data processing; com-
plex workflows

Table 4.1: Summary of the declarative crowdsourcing systems

able to estimate the cost, latency, and error associated with each query plan;
(b) the selection and tuning of different access methods (or tasks) to get data
from the crowd; and (c) the satisfaction of optimization objectives, spanning
cost, latency, error, or amount of data gathered.

4.2 Summary of Three Declarative Systems

In this section, we cover the three declarative systems. For each, we will cover
the data and storage model, the error model, and the crowdsourcing model.
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4.2.1 CrowdDB

We first cover CrowdDB, published first in SIGMOD 2011 [80].

Data Model. CrowdDB is like a traditional database, except that some
columns (in one or more tables) are designated CROWD COLUMNS, and
some tables are designated CROWD TABLES. The former designates the
case where entities are fully known, but a few attributes of these entities have
values that are unknown. The latter is when the entities themselves are not
known. In the former case, only values of these attributes are crowdsourced,
with the rest of the data assumed to be correct and fully known in advance.
In the latter case, entire tuples are crowdsourced.
Consider the following example.

Department (University, Name, Url, Phone)
Professor (Name, Email, University, Department)

An assumption CrowdDB makes is that every table must have a primary key.
In the example above, the Department table has primary key (University,
Name), while the Professor table has primary key Name. The Department ta-
ble is a regular table with the Url field (in bold) serving as the CROWD COL-
UMN, meaning that only the Url attribute is crowdsourced. The entire Pro-
fessor table is a CROWD TABLE, therefore entire tuples are crowdsourced
at a time.

Given these tables, the way the data is stored in CrowdDB is rather
straightforward. Each regular table or CROWD TABLE is stored as a sep-
arate table, and missing attribute values (say of CROWD COLUMNS) are
designated a special value CNULL (standing for CROWD NULL). Overall,
the goal of query processing is to return tuples with no CNULL values.

Error Model. CrowdDB opts for a very simple mechanism to handle errors
made by human workers. In particular, it expects that each CNULL value is
crowdsourced from k separate workers, and then the plurality (i.e., the value
that occurs the most number of times) replaces the CNULL value.

Crowdsourcing Model. CROWD COLUMNS are crowdsourced in the fol-
lowing way: When, for example, a particular Url of a given department is
to be crowdsourced, crowd workers are provided the (University, Name) pair
that makes up the the primary key, and asked to provide the Url.
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CROWD TABLES are crowdsourced in the following way: workers are
asked to provide entire tuples in one go. In the Professor example, workers are
asked to provide the Name, Email, University, and Department of a professor
all together. Note here that it is unlikely that someone try to crowdsource a
table of all Professors in the world. Instead, a user might query for all pro-
fessors at “Brown University,” and therefore crowd workers will be prompted
to provide information specifically for records that match that value on the
University field.

CrowdDB also admits the notion of Foreign Keys and uses the crowd to
ensure that Foreign Keys are respected while new information is being added.
We describe this using the example above, where the pair (University, Depart-
ment) in the Professor table references (University, Name) in the department
table. When adding a new Professor tuple for the University and Department
columns, a crowd worker is only allowed to select values from a drop-down
menu that already exist in the Department table. In this manner, the resulting
database after the professor tuple has been added continues to respect Foreign
Key constraints.

If the Department table was also a CROWD TABLE, we could ask work-
ers to augment that table when new tuples are added to the Professor table,
much like triggers that enforce continued adherence to Foreign Key con-
straints. For instance, if a worker suggests a new (University, Department)
pair, they could be asked to also provide a Url and Phone for that pair such
that it can be added to the Department table as a new tuple.

Overall. CrowdDB opts for a simple and easy-to-understand data model that
can provide a lot of useful functionality without being overly rigid or losing
out on performance.

4.2.2 Deco

We now cover Deco, whose first version was published at CIDR 2011 [145]].

Data Model. Deco, like CrowdDB, is a traditional database system, aug-

mented with crowdsourcing capabilities. Deco opts for a more general data

model than CrowdDB, but is possibly harder for users to understand.
Consider the following example:

Restaurant(Name, Address, [Rating], [Cuisine])
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AddrInfo(Address,[City, Zip])

In the Restaurant example, Name and Address of the restaurant are desig-
nated as anchor attributes, while Rating, and Cuisine form two groups of de-
pendent attributes. In the AddrInfo example, Address is the anchor attribute,
while City and Zip together form a dependent attribute group. At a high level,
the anchor attributes describe the entities of interest, while each dependent
attribute group (all of which are independent of each other) describe some
properties of the entities of interest.

These two relations represent the conceptual schema of the database, i.e.,
these are what the end user (i.e., the requester / developer) sees and interacts
with. However, what is actually stored, i.e., the actual schema, is not simply
the two relations listed above. This represents a departure from CrowdDB,
whose conceptual and actual schemas are identical. Thus, we expect that there
is a schema designer, who designs the schema, and specifies some other infor-
mation (described below), and there are many end users, who use the schema
to pose queries to retrieve data on demand. These two roles may overlap, i.e.,
the end users may be the same as the schema designers.

Given these anchor and dependent attributes, the actual schema is the
following:

RestaurantA(Name, Address)
RestaurantD1(Name, Address, Rating)
RestaurantD2(Name, Cuisine)
AddrInfoA(Address)
AddrInfoD1(Address, City, Zip)

As can be seen in the actual schema, there is a table corresponding to each
of the dependent attribute groups: one for Rating, one for Cuisine, and one
for City, Zip, as well as the anchor attribute groups: Name, Address in the
first case, and Address in the second. For each of the tables containing the
dependent attribute groups, one or more of the anchor attributes are present.
For example, in RestaurantD1, both Name and Address are present, while for
RestaurantD2, only Name is present. We describe the reason for this next.

Error Model. For each dependent attribute group, the schema designer pro-
vides a resolution rule. For our first table, we have:
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() — Name,Address : canonicalize()
Name,Address — Rating : avg()
Name — Cuisine : dupElim()

Here, the schema designer is specifying that any Name and Address that
are crowdsourced are simply canonicalized; the Ratings that are crowd-
sourced are averaged, and the Cuisines that are crowdsourced are duplicate-
eliminated. Consider Name, Address — Rating: avg(). Here, the schema de-
signer is specifying that for all sets of tuples that share the same value of
Name and Address, we will take the average of all rating values that have
been extracted or gathered from the crowd. That is, for all tuples that share
the same value on the left hand side of the resolution rule, the right hand side
values are aggregated using the function avg(). On the other hand, consider
Name — Cuisine: dupElim(). Here, the schema designer is specifying that
for all tuples that share the same Name, all Cuisine values that have been
gathered from the crowd are duplicate-eliminated. Lastly, for () — Name,
Address: canonicalize(), the schema designer has specified that all Name Ad-
dress pairs are simply canonicalized. Notice that the schema designer can
specify any error resolution mechanism they desire for each anchor or de-
pendent attribute group, with the understanding that the resolution mecha-
nisms for different attribute groups may be different: e.g., for string values
like Cuisine, we may want duplicate elimination, while for numerical values
like rating, we may want averaging or majority of k.

Also notice that the left hand side for the Cuisine resolution rule is simply
Name: this is because Cuisine is only dependent on the Name of the restaurant
and not the branch (and therefore Address), and therefore we do not need the
Address on the left hand side of the resolution rule.

For the second conceptual relation, we have the following resolution
rules.

() — Address : identity()
Address — City,Zip : majority()

Overall, there is a one-to-one mapping between each resolution rule and each
actual table in the underlying database. Readers interested in theory will no-
tice if we treat each resolution rule as a MVD (multi-valued dependency),
then the actual schema is a 4NF decomposition of the conceptual schema.
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A key benefit of normalization is that we can store the raw values in
the actual schema instead of the conceptual ones, and simply generate the
“aggregated/cleansed” values on demand. We illustrate that below.

Crowdsourcing Model. Given the actual and conceptual schema, the schema
designer provides a number of fetch rules, which are nothing but access meth-
ods or interfaces to get data using the crowd. Here are some examples of fetch
rules:

R.Name,R.Address=-R.Rating

R.Name = R.Cuisine

R.Cuisine = R.Name

() =R.Name,R.Cuisine
R.Name,R.Address=> ()
R.Address=R.Name,R.Rating,R.Cuisine

For instance, the second fetch rule provides the Name of a restaurant, and
asks the human worker to provide a Rating. The third fetch rule is precisely
the opposite: it provides a Cuisine, and asks the human worker to provide a
Name of a restaurant. We can also have () on the LHS or the RHS: the former
indicating that the crowd worker should provide a new tuple without being
provided any information, and the latter indicating that the crowd worker
should confirm the tuple being provided as a YES/NO.

These different fetch rules allows users to specify whether fields should
result in other fields, how to generate brand new records, and how to verify
that the new records are legitimate. Fetch rules are quite powerful and expres-
sive, and allow schema designers to specify a range of interfaces to get data
from the crowd, which the system can then choose between.

The data obtained from these fetch rules is then added as tuples to the set
of six actual relations: RestaurantA, RestaurantD1, RestaurantD2, Addrln-
foA, AddrInfoD1, along with metadata, such as which worker provided that
tuple, when that tuple was provided, and so on. The conceptual relation is
materialized on demand, by taking the six actual relations, applying the reso-
lution rules, and then performing a full outer join. This sequence of operations
is referred to as the fetch-resolve-join sequence.

Overall. Deco uses a more powerful and flexible data, error, and crowdsourc-
ing model than CrowdDB, with a range of expressive interfaces for gathering
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data from the crowd, as well as expressive mechanisms to resolve mistakes
made by the crowd. That said, Deco is also more complex than CrowdDB,
and the additional power that comes from these aspects may not be necessary
or warranted for simple applications.

4.2.3 Qurk

We now discuss Qurk, which was first published at CIDR 2011 [133]].

Qurk, like CrowdDB, also opts for a simple design, layered on top of
traditional database systems, by abstracting the involvement of the crowd as
UDF (user defined function) invocations. The results of the UDF invocations
can then be cached and used to avoid making future queries to the crowd,
but are treated like any other data in the database. Qurk’s design places the
participation of the crowd even further outside the database than Deco and
CrowdDB. In fact, Qurk’s query processor could be completely unaware of
the fact that it is operating on crowdsourced or non-crowdsourced data, unlike
Deco and CrowdDB. All of the crowdsourcing-specific functionality captured
within the UDF.

Consider the following example schema:

Photos(Id PRIMARY KEY, Picture IMAGE)

We will provide a query example using SQL, although the most recent
instances of Qurk also facilitated development in the Pig[[19] programming
language:

SELECT * FROM Photos WHERE isSmiling(Photos.Picture);

The query above provides a list of Photos in the Photos table in which
someone is smiling. The predicate isSmiling is a crowdsourced UDF. We will
describe subsequently how Qurk makes it simpler to specify code for these
UDFs using a higher level language.

Data Model. Qurk’s data model is simple: it is the relational data model,
along with the functionality to cache responses given by the crowd. The ad-
vantage of this data model is that Qurk can be used with all the traditional
database systems, with the crowdsourcing functionality abstracted out into
the UDF invocations.



56 An Overview of Crowd-Powered Systems

Error Model. Once again, the error model adopted by Qurk is fully inte-
grated into the UDF invocations. Qurk provides some basic error checking or
resolution functionality inbuilt into some of its task templates, but this basic
functionality can be overriden by designers. Further, Qurk does not explic-
itly specify whether the data stored in the database is cleansed or uncleansed
data. For instance, Qurk could explicitly store all the values gathered from
the crowd (like Deco) or could store just the cleansed or resolved versions
(like CrowdDB): this decision is made by the UDF.

Crowdsourcing Model. Instead of expecting the application developer to
write code for UDFs, these UDFs can be described at a high level using tasks,
which are high-level templates for common crowdsourced data processing
operations, including filtering, sorting and joins.

Here is an example of a task for the UDF we saw above.

TASK isSmiling(Picture) TYPE FILTER

Prompt: “< img src="%s’><br> Is the person above smiling?”,
Picture

Combiner: Majority Vote

The Prompt keyword corresponds to the question that is asked to the crowd
(akin to a fetch rule in Deco) taking as input the Picture being processed by
the crowd. The question returns a YES/NO response. These responses are
then combined using a Majority Vote, which is a special function that takes a
number of YES/NO answers and takes the majority. This is similar to the res-
olution rule in Deco. If the developer does not specify a Combiner, the query
calling this UDF will receive a complex response containing not only individ-
ual crowd workers’ answers, but also information on the workers’ identities,
submission times, and work histories. These additional pieces of information
allow Qurk users to use more advanced Combiners to aggregate responses.
Thus, a task consists of an interface description for a crowdsourcing op-
eration at a per-tuple level, coupled with an error resolution mechanism also
at a per-tuple level. Other tasks are provided for operations such as sorts and
joins.
Overall. Qurk is different from Deco and CrowdDB in that the crowd-specific
functionality is captured outside the database via UDF invocations. This has
its advantages and disadvantages. The advantages include the following:
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e The database need not be aware of the existence of crowdsourced data,
and doesn’t need to be modified for the sake of accommodating crowd-
sourcing operations such as error resolution, or crowdsourced access
patterns. Also due to this, the database can be replaced by a different
or newer one, and we can seamlessly inherit all the improvements that
come from the new version when operating on traditional relational
data.

e To crowdsource, we do not need to touch the database layer at all.
All the crowd-specific functionality can be captured within the UDF,
and the UDF takes care of accessing the crowd and resolving mistakes
made by the crowd.

The major downside is that the lack of database awareness of crowdsourc-
ing aspects limits query optimization involving both crowdsourcing and re-
lational data processing. Thus, the optimization decisions are encapsulated
within the UDF.

In recent work by the Qurk team [130]], they have extended Qurk allow-
ing the database to be more aware of the existence of crowdsourced UDFs,
enabling better overall query optimization. This move brings Qurk closer to a
hybrid between the former UDF-centric design, and the designs of CrowdDB
and Deco.

4.3 Design Decisions

We now describe the design decisions made by each of the three systems in a
variety of dimensions, shown in Table [4.1]

4.3.1 Integration and Data Crowdsourced

CrowdDB and Deco treats crowds as a data source, 1.e., an access method to
gather data that can be added to the database. The CrowdDB team was the
first to articulate that unlike traditional data sources, this data source violates
the closed world assumption: tables do not start off with a finite set of records
that represent all of the records the crowd will eventually provide. Instead, we
operate under the open word paradigm, where at any point there might exist



58 An Overview of Crowd-Powered Systems

more data to be crowdsourced outside of a table. On the other hand, Qurk ab-
stracts interactions with the crowd into a user-defined function (UDF), rather
than an access method.

The different integration mechanisms lead to differences in the type of
data that is crowdsourced: for CrowdDB and Deco, the view of crowds as
data sources allows them to both gather new data from the crowd (e.g., gath-
ering 100 flavors of ice cream) and coordinate crowds operating on data (e.g.,
checking if an email message is spam). For Qurk, the view of crowds as pred-
icate evaluators focuses the attention on the second type of data, and makes
it more challenging to gather new data with the crowd. It is indeed possible
to instrument Qurk to get data of the first type, but this would require UDFs
to produce entirely new tuples and table-valued functions, which might be
challenging for end-users. We list these two aspects in the first two columns
of Table 4.1l

4.3.2 Data, Error, and Crowdsourcing Model

As described above, CrowdDB opts for simple choices for the data, error, and
crowdsourcing models: the data model is the relational model, with CNULLSs
capturing NULL values to be filled in with crowdsourced values and only
cleansed data is stored; the error resolution mechanism is a majority vote;
and the crowdsourcing model involves two types of access methods: one for
crowdcolumns and one for crowdtables.

Deco opts for more complex/general choices for the data, error, and
crowdsourcing models: the conceptual schema is not the same as the actual
schema, with dirty data stored and resolved; the error resolution mechanism
is specified by the user on a per-column group basis; and the data can be
crowdsourced using a variety of access methods.

Lastly, Qurk can store either the cleansed or the dirty data; uses a user-
specified error resolution mechanism; and like Deco, allows data to be crowd-
sourced in many ways. We list these three aspects as columns 3-5 in Ta-
ble 411

The advantage of storing dirty data is that data can be cleaned to the spec-
ifications of each query: for instance, if a higher accuracy or a different res-
olution rule is needed, then existing crowdsourced responses can be utilized.
Furthermore, the dirty data that may have gotten stale (e.g., crowdsourced
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phone numbers of restaurants) can be removed by the system periodically.
Lastly, storing dirty data allows us to reason about the relative confidence of
the answers: which only storing cleansed data does not permit us to do.

The disadvantage of storing dirty data is that there is the need for a res-
olution mechanism to translate this dirty data into cleaned data: this means
the schema designer needs to reason about two different schemas and provi-
sion for both. Furthermore, this dirty data needs to be “resolved” on demand
when queries are posed. Both Qurk and Deco apply resolution rules as an-
swers come in rather than waiting until all the answers are gathered.

Notice that there is a wealth of work in probabilistic databases: Trio [[194]]
handles data with uncertain values and lineage, and presents a language for
querying this data. Dalvi and Suciu explore efficient queries over probabilistic
databases [62]]. BayesStore [[188] takes this a step further, adding complex
inference functionality to databases with probabilistic data. MauveDB [71]
explores generating model-based views over tables in order to model, clean,
and perform inference over the data.

None of the three declarative crowdsourcing systems opted to use those as
an underlying data model: this is because application designers using crowd-
sourcing often have very specific resolution models in mind, e.g., if 3 or more
out of 5 of the workers agree on this answer, then I am willing to accept it
as the “final” answer. Thus, reasoning in probabilities is often not helpful in
practice. Instead, the systems described here allow programmers to specify
how to convert multiple potentially different worker responses for the same
task into a single definitive answer, for example by keeping the response in-
dicated by a majority vote.

Access methods form another important aspect of declarative crowd-
sourcing systems: the greater the variety of the access methods, the quicker
the system can return results for a query. For example, if our query requested
four mexican restaurants in Seattle, Deco could use expressive fetch rules
from Cuisine = Name to return results quickly, while CrowdDB would need
to keep getting complete tuples of restaurants until four mexican restaurants
happened to be gathered. Qurk does not limit the kind of access methods
specified or used within the UDF; however, by virtue of crowdsourcing being
limited to a UDF, it does not easily permit the crowdsourcing of entirely new
data.
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4.3.3 Complexity, Optimization Ability

In terms of complexity, Deco is clearly the most complex, and therefore the
hardest to understand, with the user-facing conceptual schema being different
from the actual schema. CrowdDB is the simplest, by not surfacing any of
the crowdsourcing aspects to the end user: the end user does not need to
provide access methods or fetch rules, they do not need to describe how to
deal with errors made by human workers. Qurk is somewhere in the middle,
because it surfaces a lot of the crowdsourcing aspects to the end user, such as
specification of the error resolution function, which interfaces are used, and
SO on.

Due to the many interface types it offers along with the resolution mech-
anisms, Deco offers the most optimization abilities. CrowdDB is limited be-
cause it only uses a small set of access methods to gather data from the crowd.
Lastly, Qurk is less limited than CrowdDB on interfaces but is limited by the
lack of the database awareness of crowdsourced data. Thus, holistic optimiza-
tion is challenging in Qurk, though its authors did look at certain optimiza-
tions such as crowd-powered selectivity estimation in a later paper [130]. We
list these aspects in columns 7 and 8 in Table

4.3.4 Specification, Objectives, and Use Cases

In CrowdDB, queries are specified as standard SQL, with possible LIMIT
clauses that limit the amount of tuples that are output. (This is necessary
because the open world assumption means that the number of tuples could be
unbounded.) There is no explicit user control of other objectives.

In Deco, queries are specified as standard SQL, with one of either AT
LEAST, MIN TIME, or MIN COST, the first of which means that at least a
certain number of tuples are produced, the second means that at most a certain
amount of time is taken, and the last means that at most a certain amount of
cost is used.

In Qurk, queries are specified as standard SQL, with UDFs capturing the
crowdsourcing aspects. There is no explicit user control of other objectives,
except via the UDF.

Overall, CrowdDB is tailored toward applications that require data
completion—filling in missing values or attributes, or gathering unknown
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data. Deco is tailored toward data completion or data processing. Qurk is
tailored toward data processing, as well as composing more complex work-
flows.

4.4 Unresolved Issues

Even though the systems described thus far have captured a range of essen-
tial functionality, and form an important first step in tackling the problem of
declarative crowdsourcing, there are still many unresolved issues and ineffi-
ciencies. We describe each of these in turn.

4.4.1 Insufficient Optimization

None of the systems described above are able to find a globally optimal query
plan. It is still unclear how to best involve humans within computation; in fact,
even if we fixed the set of operators or interfaces that we can use, it is still not
straightforward.

All three systems do employ some limited forms of query optimization,
described below:

o All systems use some kind of asynchronous execution to deal with the
varying times for crowdsourced execution versus traditional computa-
tion. That is, a batch of tasks is generated, and then the system “reacts”
to responses as they come in. Furthermore, due to the long response
time for crowd work, it makes sense to issue more questions in paral-
lel, and then respond when the answers come in.

e All systems use some kind of predicate pushdown, to ensure crowd-
sourcing is only used if absolutely necessary; for example, if there is
an automatically evaluable predicate, it should be evaluated first before
crowdsourcing is used to avoid extraneous crowdsourcing work (which
is both time consuming and costly).

e Deco picks a query plan with appropriate choices of interfaces or fetch
rules to ensure that as little monetary cost is used as possible in com-
pleting the query. A sub-problem of interface selection was shown to
be NP-Hard [150].
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o All systems use some form of batching of questions that are sent out
to crowd workers to reduce cost. CrowdDB also identified that worker
response times depend on the number of outstanding tasks in Mechani-
cal Turk (crowd workers appear to prefer task types that are bountiful),
so sending out one task at a time is inefficient and time-consuming.

e Qurk uses features to estimate selectivity of various crowdsourcing
predicates on-the-fly, and uses that to order predicates within query
plans.

4.4.2 Capturing Metadata

Another aspect that none of the systems have completely solved is that of
capturing worker metadata, like worker IDs, times at which the data items
were retrieved, the time taken for workers to respond, and so on. It is essen-
tial to record this information to reason about quality of workers and worker
responses holistically.

CrowdDB does not record any metadata. Deco records some of this in-
formation along with each response in the actual schema, which contains raw
information. Qurk also records some of this information in its cache.

4.4.3 Grouped Resolution

All three systems perform error resolution on a per-tuple level—CrowdDB
takes a majority of k, Deco has its resolution rules, and Qurk has its combiner
functions. In practice, however, when employing EM-based quality manage-
ment techniques which jointly identify optimal estimates for worker and an-
swer quality (described in detail in Section [2.3.2), it is essential to reason
about all answers for all workers simultaneously. None of the systems allow
us to do that because they process data in a more streaming per-record fash-
ion. The current EM-style algorithms for quality management are one-shot,
meaning that they can be only used once. Any further decisions made based
on the result of the algorithms are biased and lose accuracy over time. To
the best of our knowledge, there is no work on adaptively estimating worker
quality while simultaneously deciding on the next questions to ask.

Another place where per-tuple treatment affects us is when we want to
perform Entity Resolution [[192] across all values of, say, restaurants. Even
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if we are not interested in the worker quality, and are simply interested in
resolving the set of answers, none of the systems natively support the joint
estimation of worker quality and answer quality — in a manner similar to that
performed by the Expectation Maximization algorithm.

4.5 Summary

As indicated above, there is still a lot of work to be done in building the ‘ideal’
declarative crowdsourcing system, much of it in exploring the optimization
issues. One of the inherent challenges is that we are as yet not aware of the
capabilities of human workers; but we can certainly build a useful and usable
system even by using a limited set of operators.
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Survey of Industry Users: Summary and
Methodology

In this chapter, we begin describing our survey of industry users of crowd-
sourcing. We begin with an executive high-level summary of our findings
(Section [5.1)), discuss our survey methodology (Section [5.2)), and describe
three categories of industry users we identified (Section [5.3).

Over the next few chapters, we describe the detailed survey results,
specifically:

e STATISTICS: the statistics of the crowdsourcing deployments (Sec-

tion [6)),

e USE CASES: the applications crowdsourcing is typically used for, ap-
proaches adopted before the advent of crowdsourcing, and the benefits
provided by crowdsourcing (Chapter 7)),

e DETAILS: ensuring quality, incentivization, task design, and other de-
ployment challenges. (Chapter 8]

We begin with a high level summary of our findings; given the extent of
our undertaking, it is impossible to summarize all of our takeaways into one
section. We therefore encourage even the impatient reader to at least skim all
four chapters, with a special eye towards the excerpted quotes and tables; the

64
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former containing special anecdotes, use-cases, or lessons learned, the latter
containing summaries of the findings of the sections within the chapters.

5.1 Executive summary

Crowdsourcing is common. Crowdsourcing is alive and well at the compa-
nies we spoke with: none are indicating that they are decreasing their invest-
ment in it, and almost all of them were looking for new ways to use it.

Crowdsourcing deployments are large-scale. The statistics on crowd man-
agement and the teams that build crowd-powered systems were illuminat-
ing (Section [6)). At their largest, participants reported hundreds of employ-
ees deploying hundreds of thousands of tasks per week, with overall spend-
ing in the millions of dollars per year. The number of employees building
crowdsourcing-oriented tools ranged from 1 company-wide to “tens to hun-
dreds” at larger organizations. The participant with the highest paid task
throughput reported processing about 400,000 tasks per week, and the most
popular response across participants was in the low tens of thousands of tasks
per week. At the low end, participants reported spending $300-$1000 per
week. The two largest participants that provided us with numbers reported
spending approximately $10,000 and $30,000 per week respectively.

Many users host their own platforms, with long worker relationships.
Five participants hosted their own crowd work platforms (i.e., they use an in-
termediary or outsourcing company to hire workers who work on tasks pro-
vided by the participant 9-5). The ubiquity of internal crowd work platforms
was one of the most surprising findings from our study; indicating that aca-
demic research, which is focused on popular platforms like CrowdFlower and
Mechanical Turk, has summarily ignored one of the most common industry
mechanisms for employing crowdsourcing. Apart from the five that only use
their internal platform, five utilized an external provider’s platform, and two
did a mix of both. When participants hosted their own platform, the length
of relationship with workers was high: The most common response for max-
imum worker tenure was 3 years, with medians between 1 and 2.5 years. At
the low end, participants interacted with 50-100 workers per week, and at the
high end, participants interacted with 100s to low 1000s of workers in a week.

Many new and novel uses of crowds. Some companies are doing interest-
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ing and novel things with the crowd (Section [7.1)). For example, one partici-
pant has such a trusting relationship with a few hundred crowd workers that
the participant feels comfortable pre-paying the workers to monitor the news
for updates on companies of interest and updates crowd workers’ balances
as they send back “new” facts. Yet another participant uses crowdsourcing
frameworks on in-house employees, who work on tasks whenever they get
time free from their regular work.

Classification and entity resolution are most popular uses of crowds.
While there are many interesting use cases, most of the ones participants
described are relatively standard. The two most popular use cases are classifi-
cation and entity resolution. There are often large teams that use crowdsourc-
ing for only one targeted application (e.g., categorization, or data extraction);
they have spent many months tuning their deployment for this application,
and use it periodically.

Most problems solved by crowdsourcing are unsolvable without it. We
wanted to understand how crowdsourcing was perceived at various compa-
nies. When asked how they solved problems before the advent of crowd work,
a little less than half of the responses were of the form “our company didn’t
exist at that point,” or “we didn’t solve this problem before crowdsourcing”
(Section [7.2]). When we asked participants to explain some of the benefits of
crowd work, the top three responses pointed to the flexibility to scale work
up and down, the low cost, and that crowdsourcing enabled previously diffi-
cult or impossible tasks (Section [7.3). One participant told us that the main
benefit he derives from crowd work is that he doesn’t need to “argue with
management” to hire the manpower to get things done; he can simply use
small amounts of money as the need arises.

Quality management schemes are somewhat primitive. Most participants
use very simple schemes, such as majority vote over multiple worker re-
sponses, to remove errors. However, more than half of the participants do
use some form of simple Expectation-Maximization scheme to reason about
worker error rates and task answer quality (Section [8.1)). Most participants do
not do any optimization to reduce cost while keeping accuracy fixed.

Incentivization schemes are primitive. The most common methods for in-
centivizing workers were financial: per-task payment was the most popular,
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followed by bonuses and hourly payments (Section[8.2)). Less tangible incen-
tives, like gamification, leaderboards, and promotions, were less popular.

Industry users rarely use workflows/toolkits from academia. Finally,
while we have so far described how participants successfully used crowd
work, researchers might also wonder how some of the more complex ap-
proaches from the literature have fared in practice (Section [8.3). Surpris-
ingly, no participants utilized third-party frameworks to simplify their crowd-
powered data processing workflows. Many participants reported that none
of their workflows have more than crowdsourcing step, suggesting that par-
ticipants are looking for simple tasks to be completed rather than the more
in-depth multi-stage workflows perscribed by crowdsourcing researchers. In
support of this observation, less than a third of participants claimed to use
at least one crowdsourcing “design” pattern (iterative refinement, find-fix-
verify, or do-verify—we will describe these later) from the literature.

As you read this chapter, watch out for various tables and pull quotes
to guide you through our findings. Much of the summary above has been
extracted from these pull quotes, and we hope they can serve as guideposts
for your reading.

5.2 Survey and recruitment methodology

Here, we describe our survey methodology for both the survey of industry
users, as well as the survey in Chapter [9] of marketplace providers.

With a goal of identifying the key use cases, existing solutions, and open
research problems in the field of crowd-powered data processing, we con-
ducted surveys of two groups of stakeholders: 1) industry users of crowd-
sourcing, and 2) operators of crowd labor marketplaces. Each survey con-
sisted of approximately 45 minutes worth of questions. Participants had an
option of taking the survey synchronously by phone or asynchronously over
email. When a participant requested a phone interview, the authors took notes
and coded the responses on behalf of the participant.

To generate the surveys, we first created a list of topic areas we wished
to learn more about, and then iteratively generated questions, recategorizing
questions into topic areas as appropriate. We received feedback on the ques-
tions from an expert in survey generation. For the industry survey, we piloted
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Description of Survey Section # Questions  Paraphrased Example Questions Chapter
Crowd Use Cases 4 — Which of the following use cases of crowds |7
apply to the tasks your team is solving? (ex-
amples include classification, text generation,
etc.)
— How did you solve these problems before
crowdsourcing?

Crowd Management Statistics 6 — How many people in your organization |6
work on crowdsourcing?
— How many tasks per week do you gener-
ate?

Quality of Work and Workers 5 — How do you evaluate worker quality? 8]
— Do you provide feedback to workers?

Incentives/Payment Mechanisms 3 — Do you pay workers hourly or per task? 8]
—Are there different classes/tiers of workers?

Task Design/Decomposition 7 — What crowd management frameworks do |8
you use?
— Do you primarily create microtasks or
macrotasks?

Table 5.1: A summary of the types of questions we asked participants either through a survey
they filled out on their own time or through phone interviews. The example questions provided
are paraphrased descriptions. Detailed questions can be found in Appendix E}

the survey with one participant by voice and one by email and further clar-
ified the questions based on confusion that arose during the interviews, but
kept the responses from the two pilot participants. There were too few mar-
ketplace participants (4) for a pilot phase, but we conducted the marketplace
surveys after the industry ones, and were able to clarify marketplace ques-
tions from that experience.

The industry survey consisted of six sections: use cases, infrastructure for
managing workers, tools for inferring worker and work quality, incentive and
payment mechanisms, task design and decomposition, and a ranking of chal-
lenges. The marketplace survey covered crowd demographics, descriptions
and summary statistics of common implementations/use cases, and worker
and work quality assurance. The chapters that cover the results of each sec-
tion of the survey are also listed. Table [5.1] describes each section in more
detail, and the industry and marketplace surveys can respectively be found in
Appendices [A]and [B]

To recruit participants, we surveyed our own social networks and the
crowdsourcing literature (conferences, workshops, and blog posts) for indus-
try participants, and contacted them for their participation. To expand the
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Company Team Persona
Amazon Product classification Largely single-case user
Captricity ~ Focus of large part of company Largely single-case user
Dropbox Single person consulting several teams ~ Multi-case user / Internal provider
Facebook Entities team Multi-case user
Flipora Startup CTO Multi-case user
GoDaddy Small business data extraction Multi-case user
Groupon Merchant data team Multi-case user
Google Internal crowdsourcing team Internal provider
Google Web knowledge discovery team Multi-case user
LinkedIn Single person consulting several teams ~ Multi-case user / Internal provider
Microsoft Internal crowdsouricng team Internal provider
Microsoft ~ Search relevance team Multi-case user
Youtube Crowdsourcing team Largely single-case user

Table 5.2: A summary of the company and persona of the team that we spoke with in that
company. Some organizations (e.g., Microsoft, Google) are so large that we were able to speak
with both a multi-case user and an internal provider. Note that some teams (e.g., Dropbox,
LinkedIn) were largely composed of a single person that both implemented crowdsourcing
solutions and consulted other teams on crowdsourced implementations.

scope of the survey, we asked that initial set of participants for any rele-
vant connections that they had. Participants were ensured that their responses
would only be reported in aggregate, except for meaningful quotes that they
would be allowed to review. Table[5.2]identifies our survey participants.

5.3 Three personas of industry users

After evaluating responses to the industry user survey, we identified three
team personas that we later use to summarize some of our findings. While
these personas don’t always utilize crowd work similarly, their behaviors of
teams with the same persona are often similar.

Internal providers (4/13). These teams serve as tool- and service-builders
for other crowdsourcing users within their company. They are often the go-to
team that provides consulting in addition to the tools that they build. As a
sign of the breadth of their experience, three of the four internal providers we
surveyed saw every data processing use case that we listed. These specialized
intermediary teams are more common in larger companies with varied needs.
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Multi-case users (8/13). These teams directly solve problems with crowd
workforces, rather than serving as intermediaries as the internal providers do.
Forming the largest set of participants by far, these teams do not see as many
use cases as the internal providers, but have end-to-end experience solving
several problems for their companies.

Largely single-case users (3/13). These users use crowds in a small number
of workflows for primarily one task within their company or team, and can
often reflect on several iterations of their solutions to this one problem. The
small number of use cases should not be conflated with less experience with
crowd work: one of our largely single-case participants consistently generates
hundreds of thousands of tasks per week, amongst the largest task generation
volume of any participant.

Some organizations (e.g., Microsoft, Google) are so large that we were
able to speak with both a multi-case user and an internal provider. Note that
some teams (e.g., Dropbox, LinkedIn) were largely composed of a single
person that both implemented crowdsourcing solutions and consulted other
teams on crowdsourced implementations.
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Survey of Industry Users: Crowd Statistics and
Management

We now turn to descriptive statistics around how different organizations man-
age crowd work, including the makeup of the teams building crowd-powered
data processing systems, the scale of such systems, and various payment
and recruitment methods. When possible, we describe trends we observed
amongst the three personas described in Section

We asked participants to identify their use of both explicit crowd work
(e.g., paid workers, volunteer workers) and implicit crowd work (e.g., posthoc
analysis of user email spam tagging or user search logs). In the former case,
workers are aware that they are working on “tasks” and are explicitly re-
cruited for that purpose, and in the latter case, some by-product of user activ-
ity is used to generate useful data. Every single participant had at least one
explicit crowd workflow, whereas only a subset made use of implicit user
traces. For the remainder of this section, we explore participants’ responses
to their uses of explicit crowd work, while also noting the fact that implicit
crowd work is also used by many of the participants.

In the next few sections, we cover various statistics surrounding real-
world crowdsourcing deployments.

e SIZE OF TEAMS. We describe how large teams building large scale
crowdsourcing pipelines or workflows can get in Section|[6.1}

71
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e TASK THROUGHPUT. We describe the number of tasks performed by
workers working for each of these participants in Section

e SPENDING. We describe how much money these teams spend on
crowdsourcing in Section[6.3]

e REDUNDANCY. We describe how different users use redundancy to en-
sure worker quality in Section[6.4}

e RECRUITING. We describe where these teams recruit workers from in
Section

e TENURE. We describe length of employment in Section [6.6]

6.1 Size of systems-building teams

The number of employees ranged from 1 company-wide to “tens
to hundreds” at larger organizations, with a median of 4 and a
mode of 2.

One of the most notable observations was that, in some cases, the cost
of compensating the internal teams that are using crowdsourcing for vari-
ous tasks or building crowdsourcing platforms was often comparable to the
amount of money spent on paying crowd workers for completing tasks.

This was initially very surprising to us. That said, this observation is un-
derstandable given the nascency of crowd work: until more generally appli-
cable systems (possibly advanced, more optimized versions of the systems
described in Section [)) are available, organizations will invest deeply in the
technology to get their crowd-powered workflows right. That said, it is also
possible that building and iterating on crowd workflows will remain a “dark
art,” and that individuals who do a good job designing such workflows or
deployments will remain well compensated.

Thus, while crowdsourcing enables organizations to scale their data pro-
cessing tasks beyond what would be possible with in-house employees, build-
ing crowd-powered data processing systems requires an investment in full-
time engineering and operations teams. We asked participants how many full-
time employees in their organization work on these systems.
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The number of employees ranged from 1 company-wide to “tens to hun-
dreds” at larger organizations. Overall, a median of 4 full-time employees
worked on crowdsourcing systems development teams, with a mode of 2 full-
time employees.

Amongst the internal providers persona, team sizes ranged from 1 to 30.
The largest internal provider maintained a team size in the range of 20-30,
with approximately 150 employees building products and tools that depended
on the internal crowdsourcing platform. For the multi-case user persona, team
sizes range from 2 to “tens to hundreds,” with team size commensurate with
the size of the company we spoke with. Finally, the largely single-case crowd-
sourcing user teams ranged in size from 2 to 21.

These numbers are striking in their variance. While we make no claims to
statistical significance, it is worth noting that we saw no obvious relationship
between team size does and persona. Team size seems to be more dependent
on the particular solution set and company organizational style than the scale
of the problem faced by each organization. In some smaller organizations
with largely one use case, an entire company might see itself as a crowd-
sourcing organization, whereas larger organizations might depend on a single
in-house expert.

In some of the organizations making a larger team size investment in
crowdsourcing, their investment is quite high. If we conservatively underes-
timate a cost of $100,000 per year to employ a full-time engineer, the largest
organizations are investing $1-$10 million dollars per year in talent alone.

6.2 Task throughput

The participant with the highest paid task throughput reported
issuing about 400,000 tasks per week, and the most popular re-
sponse across participants was in the low tens of thousands of
tasks per week.

We asked participants how many tasks per week workers complete for
their purposes, not including redundant tasks for quality purposes (We cover
this in Section [6.4). Six participants responded, with a minimum of around
1000 tasks a week and a maximum of millions of tasks per week. The par-
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ticipant processing or issuing millions of tasks per week makes heavy use
of volunteer explicit crowd work. The participant with the second-highest
throughput processes about 400,000 paid tasks per week, and the most popu-
lar response across participants was in the low tens of thousands of tasks per
week. Note that none of the internal provider persona participants answered
this question; one can only guess at the scale of these internal operations.

One participant (multi-use case persona) underscored the non-uniformity
in task throughput. When training models based on crowd worker input, they
complete around 2000 tasks per day for several months, going to zero once
they have enough training data.

6.3 Monetary spending

At the low end, participants reported spending $300-$1000 per
week. The two largest participants that provided us with numbers
reported spending approximately $10,000 and $30,000 per week
respectively.

We asked participants approximately how much money they spent per
week on paying crowd workers. At the low end, participants reported spend-
ing $300-$1000 per week. The two largest users that provided us with num-
bers reported spending approximately $10,000 and $30,000 per week respec-
tively, and we note that most of the largest teams elected not to report a figure.
Several organizations reported spikes in their spend rates: it was not uncom-
mon to hear of temporary order-of-magnitude increases in spend rates to solve
a particular problem in a short period of time.

We see that some organizations spend as much or more on build-
ing crowd-powered systems than they do on compensating the
crowd for their work.

Given our previous estimates that the largest organizations spend upward
of $1-$10 million dollars a year compensating their crowdsourcing system-
builders, we see that some organizations spend as much or more on building
crowd-powered systems than they do on compensating the crowd for their
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work. From these numbers, it is clear that crowdsourcing can be a relatively
large investment for an organization, and that organizations are willing to
make those investments for the benefits for crowd work. The numbers also
indicate that there is room for libraries and systems that might simplify and
reduce the investment required for organizations build crowd-powered data
processing workflows.

6.4 Task redundancy

In addition to the number of tasks completed, we also prompted participants
to explain how much redundancy they built into their tasks. These answers
varied by application area. For those participants that utilized redundancy
to improve result quality of objective responses, participants tended to seek
out a minimum of 3 and a maximum of around 10 redundant responses per
task. Other respondents that were looking for a broader sample of responses
of subjective questions or ratings asked anywhere from 15 to hundreds of
respondents to provide feedback.

One participant, in “exploration mode” would set task redun-
dancy between 3—10 until they identified good workers, and then
had little or no redundancy within the pool of vetted workers.

When participants could plan for a longer-term investment, they changed
their strategy. One participant, in “exploration mode” would set task redun-
dancy between 3 and 10 until they identified the best workers, and then had
little or no redundancy within the pool of vetted workers. Another participant
that opted for a hierarchical review strategy [91]], where vetted workers would
review or spot-checked entry-level workers, reported 1-2 workers interacting
with any task on average.

6.5 Recruiting

We asked participants about their recruitment techniques for crowdsourcing.
Our findings largely broke down along these dimensions, expanded below.
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Five participants hosted their own crowd work platforms, five
utilized an external provider’s platform, and two did both.

In-house vs. external platform. Before we started the survey of industry
users, we were already aware of some companies using in-house platforms,
i.e., having a crowdsourcing platform built in-house, where only tasks from
that company are issued, and answered by workers possibly either working
within the auspices of the company, or from an external (trusted) outsourc-
ing company. These crowdsourced workers are trusted workers, and work
on the companies tasks from 9-5, much similar to a full-time job. So we
decided to explore how many participants use their own in-house platforms
versus external ones, operated by companies like Amazon (Mechanical Turk)
or CrowdFlower. Of 13 responses, five participants hosted their own crowd
work platforms, five utilized an external provider’s platform (limited to Me-
chanical Turk and CrowdFlower), two did a mix of both, and one provided an
unclear response.

Generally, we found that the larger the organization, or the more complex
the problem, the more likely the participant was to use an internal platform for
task distribution. For simpler tasks, and especially for microtasks, participants
trusted external provider’s platforms for task completion. Companies using
crowdsourcing at scale often preferred to have their own platform, possibly
to have fine-grained control, hiring, retention, and firing of workers and to
deal with sensitive information (as we will see below).

Companies using crowdsourcing at scale often preferred to have
their own platform, possibly to have fine-grained control of hir-
ing and firing of workers and to deal with sensitive information.

One vs. many sources of crowd workers. Next, we wanted to see if the par-
ticipants we surveyed used multiple platforms for soliciting crowd work, or
used only one, and if they did use multiple platforms, how did they divide
work across these platforms. Of the 13 responses we received, eight partic-
ipants sourced their workers from multiple different crowds (e.g., Upwork
and Mechanical Turk), four went to a single source, and one response was
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unclear. Some participants had a notion of overall quality or specialties of
particular crowds. One participant claimed that they believed vendors/out-
sourced contractors (via say, an in-house platform) to be more trustworthy
than Mechanical Turk. An in-house platform also enabled processing of that
was sensitive in nature, but we also noted some historical effects, where an
organization that started with in-house workers might stick with them for
task and content types that other participants used external contractors for.
Another participant went to Mechanical Turk for the greatest pool of workers
with useful filters (e.g., geographies or quality) for targeting particular types
of workers. Finally, one participant used a mix of Upwork, CrowdFlower, and
temporary contractors depending on the type of task they were completing.

This question also resulted in a number of interesting one-off responses.
One participant, who had one of the highest task throughputs we encountered,
did not limit their recruitment on Mechanical Turk to workers of a particular
quality rating or geography, but narrowed down the prospects with qualifi-
cation tests and internal grades. Other participants utilized a mix of worker
filters for geographies and quality ratings, but also made use of task-specific
qualifications. A participant that had utilized Mechanical Turk for several
years and established relationships with some workers set up a mailing list to
advertise new tasks.

Two participants utilized a feature of CrowdFlower (described in detail
in Section[9.2.1)) that allows requesters to make use of the CrowdFlower task
distribution platform but provide their own employees or workers. This fea-
ture points to a future for systems-building for crowd-powered data process-
ing: some organizations, even if they are particular about their use of in-house
employees, find benefit in using pre-built systems to distribute work and es-
timate work quality.

6.6 Crowd worker tenure

The most common response for maximum worker tenure was 3
years, with medians between 1 and 2.5 years. At the low end,
participants interacted with 50-100 workers per week, and at
the high end, participants interacted with high hundreds to low
thousands of workers in a week.
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We prompted participants to expand on how many crowd workers inter-
acted with their workflows each week, and what the median and maximum
tenures of their workers were. In the eleven responses, two groups arose.

Black box/unsure. The first group used services like CrowdFlower or Me-
chanical Turk, or even in-house platforms operated by outsourcing firms, ab-
stracting away their direct interaction and recruiting of crowd workers. Many,
but not all, of these respondents explained that they didn’t know how many
workers they interacted with in a week, or how long a relationship they had
with those workers. Tenure and quality is still important on these systems, but
these notions are abstracted from the end-user. So while marketplaces still
optimize for tenure and quality, the users of these intermediary marketplaces
largely trust marketplaces’ abstractions.

Long-term/self-aware. The second group sought out contracts with workers
on platforms like Upwork, or revisited their highest-performing workers on
platforms like Mechanical Turk. As a result, they were more aware of their
relationship length and number of workers. The length of the worker relation-
ship in these systems was striking and largely correlated with the lifespan of
the organization: the most common maximum worker tenure response was
3 years, with medians between 1 and 2.5. At the low end, these participants
interacted with 50-100 workers per week, and at the high end, participants
interacted with high 100s to low 1000s a week. These numbers did not seem
to have a relationship with the participant persona: the scale and value of the
problem tended to indicate the scale of the investment in the crowd.

When participants relied on microtasks with worker relation-
ships and quality managed or abstracted away by marketplaces
like CrowdFlower; they tended to have less of a sense of the depth
of their relationship with crowd workers.

For some participants, we saw both forms of responses. When participants re-
lied on microtasks with worker quality managed by marketplaces like Crowd-
Flower, they tended to have less of a sense of the depth of their relationship
with crowd workers. When they managed longer-term investments in con-
tractors (such as on Upwork), they tended to know how many hundreds of
workers they had interacted with, often for many years per worker.
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Survey of Industry Users: Use cases and Prior
Approaches

In this chapter, we focus on the value proposition offered by crowdsourcing,
especially for large-scale data processing. We begin by capturing the various
use cases (Section[/.1]), then cover the prior approaches that these participants
used before the advent of crowdsourcing (Section[7.2)), and then describe the
benefits of crowdsourcing as explained by the participants (Section[7.3)).

7.1 Use Cases

As part of the industry survey, we asked participants to identify some com-
mon crowd-powered data processing use-cases. The goal of identifying use
cases is to contrast what is actually used in practice with the algorithms that
academics have focused on developing crowd-powered variants for in Chap-
ter 3l

We provided participants a list and asked them to select options from this
list, and also allowed them to provide their own. For each of the use-cases
identified, we asked them to expand on details using free text.

Of the provided use cases, all but one of the use cases were selected by at
least one participant. Summary statistics on common use cases can be found
in Table [Z1l Note that the use-cases we list in that table do not have a direct
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Use case # Participants Examples

Classification and categorization 12 User classification, business vertical classification, sen-

(all except spam detection/content timent analysis on product reviews, song genre classifi-

moderation) cation, structured data extraction, website categorization

Spam detection/content moderation 5 ‘Web/email/comment spam, adult/offensive content, il-
licit search engine optimization schemes, copyright vi-
olations.

Entity resolution/matching 6 Identifying whether two business listings are the same,

or identifying businesses, people, places, celebrities, or
movies in unstructured text

Ranking and relevance 5 (unprompted)  Image/video-based multimedia ranking to surface high-

quality content to users, or search relevance in areas such
as web or domain name search.

Data cleaning/normalization 5 Canonicalizing/normalizing data to a style guide, find-

ing authoritative sources to vet extracted facts, verifying
previously extracted facts to ensure accuracy, identify-
ing new facts about existing entities.

Data extraction 5 Digitizing paper forms, converting unstructured data

embedded in photos, PDFs, Word documents, HTML
documents, and Flash animations to structured data, and
lead generation.

Text generation 5 Researching a company or product and writing a blurb

about it, summarizing news articles, or rewriting exist-
ing content.

Table 7.1: Crowd use cases, number of participants, and examples that our participants re-
ported. Note that all options were enumerated for participants in a checklist except for ranking
and relevance, which participants reported without prompt. While the last five use cases were
all cited by five participants, the participants for each use cases did not always overlap.

one-to-one relationship with algorithms that we described in Chapter [3] This
is by design: instead of using technical terms that are familiar to researchers in
crowdsourced data processing, we opted instead of simpler terms that would
be easily understood by developers and data scientists. For instance, instead
of using the term filtering (often used in database parlance), we opted in-
stead for classification (more common in machine learning and data science).
We will add footnotes wherever appropriate to shed light on the mapping
throughout this chapter.

As can be seen in the table, almost all participants made use of crowds
for some form of classification and data cleaning/normalization. While we
did not include it as an option in our use case list (an omission on our part),
many participants self-reported crowd-powered ranking/rating as a common
use case. The one option we provided that no participant selected was schema
mapping, and while we know of efforts to crowdsource such work in indus-
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tr we were unable to get feedback from companies that use crowds for
schema mapping. In the sections to follow, we dive into the details of various
use cases.

We begin with unique and notable use cases (Section [7.1.1)), and then
cover each of the more traditional use cases—corresponding to rows of Ta-

ble [ZI—in turn.
7.1.1 Unique and notable use cases

While the details of common crowd-powered data processing use cases are
illuminating, we also found a few long-tail gold nuggets. These creative and
unique uses are exemplars of the breadth of capabilities that crowds enable.
We now highlight some of the notable cases.

Continuous Queries and Pulse Checks. One of the most exciting scenarios
we heard of was from a small multi-case user. Because of a long-term trusted
relationship with about a hundred crowd workers on Mechanical Turk, the
participant is able to pre-pay crowd workers to monitor and track chang-
ing facts in the world. For example, the participant might prepay a worker
around $20 to monitor a set of companies and alert the participant when any
key employees change. For every correct update, the worker can subtract $1
from their running tab, and as the balance becomes low, the worker can re-
quest another allocation. Whereas most crowdsourced data processing tasks
have a relatively short request-response microtask format, the participant de-
scribed something closer to a continuous query [29] in streaming database
systems. In addition to suggesting an interesting direction for crowd-powered
databases research, it also highlights an endpoint on the diverse spectrum of
crowd worker-requester relationships. Typical relationships on Mechanical
Turk are fleeting in that requesters don’t establish longer-lasting relationship
with workers, and especially not over the course of a single task. Here, the
relationship’s long-term nature allows a requester to trust workers to work on
a prepaid basis and maintain complete and accurate datasets over time.

For example, the participant might prepay a worker around $20
to monitor a set of companies and alert the participant when any

'e.g., Data Tamr: http://www.tamr.com/


http://www.tamr.com/

82 Survey of Industry Users: Use cases and Prior Approaches

key employees change. For every update, the worker can subtract
81 from their running tab, and as the balance becomes low, the
worker can request another allocation.

The prepaid crowdsourcing example underscores an interesting use of
crowds for push-based continuous queries. In addition to the use case above,
another participant also reported sending out a survey to crowd workers pe-
riodically as a “pulse check” to verify the strength of various signals (e.g.,
determining how relevant a topic is to current events). While these pull-based
queries don’t change, the crowd’s responses to them changes over time.

Translation and Surveys. While the previous examples focused on interest-
ing query types, two other interesting uses of crowds focused on properties
of specific crowd workers. One participant reported doing crowd-powered
language translation, which requires an understanding of the languages a
given worker is capable of translating. In another use-case, two participants
reported sending surveys out to the crowd to collect subjective ratings and
opinions. Whereas the most common use cases of crowd work seek some
universally recognized truthful response across multiple workers, eliciting
subjective opinions from a crowd presents new and interesting challenges.
There has been some initial work from the PL research community on mak-
ing it easy to design surveys [178].

Design Iteration and Programming. Crowd work tends to be presented as
an inexpensive mechanism to perform repeatable piecemeal knowledge work
without much skill, and this was representative of the majority of use cases
participants reported. Two use cases pushed against this caricature, however.
One participant tested design iterations of new user experiences and inter-
faces on their crowd, suggesting a more creative and subjective avenue for
getting feedback at scale, while also requiring the crowd to be reasonably
design-minded. Another participant climbed up the knowledge work ladder
from their typical categorization tasks to also hire programmers from the Up-
work platform. While hiring freelance programmers existed before the advent
of crowdsourcing, this use case toed the line: the participant asked multiple
programmers to solve the same problem, keeping the solution they judged to
be the best amongst several. This use case lies at the junction of traditional
freelancing, where a single knowledge worker delivers some expert contribu-
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tion, and traditional crowd work, in which multiple workers are often asked
to provide solutions to a problem.

7.1.2 Classification and categorization

Almost all of the organizations we spoke with performed some
kind of crowd-powered classification (e.g., categorizing a busi-
ness type or identifying spam content), albeit for a very broad set
of purposes.

The first use case that we asked the participants about was classification
and categorization. Classification and categorization refer to verifying if each
item belongs to one out of a set of classes. Thus, based on Chapter 3] clas-
sification would correspond to filtering (Section [3.3.2), while categorization
could correspond to rating (Section [3.3.2) — if it involves a few classes,
or could correspond to categorization (Section [3.3.4) — if the item is to be
categorized into a taxonomy. Note that we separate out spam detection and
content moderation out into a separate use case even though both of those
could be labeled as classification; this is because we expected spam detec-
tion and content moderation to require special attention from the participants
due to the sensitive nature of the material. We describe our findings on spam
detection and content moderation subsequently.

Almost all (12 of the 13) of the participant organizations we spoke with
performed some kind of crowd-powered classification (e.g., categorizing a
business type), albeit for a very broad set of purposes. We list them next:

e Inferring some new attribute of a user (e.g., their gender or job) from a
social media profile,

e Business vertical classification (e.g., is this business a dry cleaner or a
restaurant?),

e Sentiment analysis on unstructured product reviews (e.g., positive vs.
negative reviews),

e Identifying the genre of a song,
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e Structured data extraction from unstructured text (e.g., identifying the
price of a menu item), and

e Web-page or product categorization into one of around 3000 cate-
gories.

In exploring the use cases, we came upon two dimensions by which we could
break down these tasks:

Training vs. verification. A large number of the participants we spoke with
utilized crowd-powered classification to train or retrain a classifier. One large
organization estimated that 75% of their crowd-powered classification tasks
are for generating training data that will power machine learning algorithms.
A smaller number of organizations used crowd-powered classification to vet
a decision made by an algorithm or another human being, for example, re-
viewing whether an algorithm properly identified the type of a business.

Simple, limited-class classification vs. media understanding. Most orga-
nizations used crowdsourcing to classify text, with a small number of classes
(e.g., business type, or sentiment class). Text is easy to generate features for,
since the features naturally correspond to the words in the document, and are
easy to automatically identify. Further, training a classifier is also easier in
this case because the number of classes is bounded.

Two of the larger organizations used crowds for more challenging me-
dia understanding tasks, including image, video, audio clip or unstructured
text, where the output domain is large. Such tasks included image classifica-
tion, machine reading comprehension, speech data understanding, or caption
generation. Based on our findings, such tasks seem to be limited to large orga-
nizations that have the ability and resources to tackle these more challenging
problems. As the cost of computation and storage goes down, and as these
problems become more tractable via the development of machine learning
algorithms that can partially address them, we expect that more organizations
will turn to media understanding and large domain classification problems.

7.1.3 Spam detection/content moderation

While essentially a form of classification, we kept spam detection and con-
tent moderation in its own category of use case for several reasons. First,
given the sensitive nature of the content, it is notable that organizations trust
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crowd workers with it, and in fact, some participants left this work to inter-
nal contractors. Second, making these nuanced moderation decisions requires
detailed instructions and examples, suggesting a level of sophistication that
might surpass more general classification decisions. For instance, while it
may be alright if we mistakenly label a tweet as negative instead of positive,
it may be catastrophic if we label a not-spam email as spam.

Five of the 13 participants utilize crowds for spam detection and content
moderation. The moderated content included web spam, email spam, com-
ment spam, adult content, offensive content, illicit search engine optimization
schemes, and copyright violations. While most of the ones in this list are not
surprising to us, we were not aware that companies used crowds for the last
two in the above list.

The five participants that employed crowds for such content moderation
were some of the larger organizations that we had surveyed. Their size may
indicate that moderation is more crucial when dealing with scale that makes
it necessary to moderate content. The fact that these participants made use of
crowd workers implies that making such decisions requires more nuance than
fully automated algorithms might be able to provide.

Furthermore, since the nature of undesirable content or spam may change
or evolve over time, these companies view it as a “moving target,” for which
training data needs to be constantly obtained. This is very much unlike the
traditional wisdom of getting some training data, building a good machine
learning model, and letting it operate without any changes.

Since the nature of undesirable content or spam may change or
evolve over time, these companies view it as a “moving target,”
for which training data needs to be constantly obtained.

7.1.4 Entity resolution or matching

We now move onto entity resolution or matching. As we described in Sec-
tion [3.3.3] of Chapter 3] entity resolution refers to the task of detecting which
pairs of entities are identical. This could be used as a precursor to a step where
the duplicate entities are removed. As it turns out, six of the 13 participants
used crowdsourcing for entity resolution. Some common use cases were:
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e Pairwise resolution. Given business listings from two different sources
(e.g., “Joe’s Pizza on 123 Cambridge St. in Cambridge MA” and “Joe’s
Restaurant on Cambridge St. in Cambridge”) and determining whether
they described the same business. The same task is also applied to peo-
ple, places, celebrities, entities, and movies.

e Matching mentions to entities. Matching detected entities in text to
known entities (e.g., given a news article, and an underlined individ-
ual, match this individual to a social networking profile).

These tasks sometimes stand alone, but are often utilized to train or tune entity
resolution algorithms.

7.1.5 Ranking and relevance

We next consider ranking or relevance; this corresponds to either rating, as
described in Section [3.3.2] if the eventual output is a rating of each item
independent of other items, or corresponds to ranking, as described in Sec-
tion[3.3.1] if the eventual output is a ranking of all items.

Ranking was the most popular data processing use case that we
had not explicitly called out in our survey.

Ranking was the most popular data processing use case that we had not
explicitly called out in our survey—this was an omission on our part. Around
five use cases arose in participants’ self-report. Ranking was generally used
at larger organizations that wanted to tune relevance algorithms with micro-
task feedback from crowd workers. Image/video-based multimedia ranking
was one application area, and search relevance in areas such as web or do-
main name search also arose as a popular application. Groups responsible
for products such as social news feeds also explained that they utilized paid
crowd work to identify high-quality articles to surface to users.

The specific mechanism or crowd worker input interface was not always
discussed. However, we saw more evidence of rating-based interfaces, where
a workers rate a single item on a pre-set scale (e.g., 1=low relevance, 7=high
relevance), than of comparison-based ones, where workers might be asked
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to rank several exemplar media elements (e.g., articles, web pages) against
one-another. The design of interfaces for eliciting rankings from a crowd has
witnessed some attention from academia [132]]; from our survey, we found
that participants tended to pick simpler rating-based interfaces that have been
shown to have lower cost and accuracy over more expensive and possibly
more accurate comparison-based interfaces.

7.1.6 Data cleaning, verification, and normalization

In the work on crowd-powered database systems (Chapter ), one of the mo-
tivating applications was to clean or normalize data already present in the
database or gathered from the crowds. We therefore considered asking our
participants if they used data cleaning and normalization. Five participants
send data cleaning and normalization tasks to crowd workers. These tasks
included:

e Canonicalizing and normalizing data to a style guide (e.g., changing
capitalization or abbreviations),

e Finding authoritative sources to vet extracted facts from unstructured
data,

e Verifying that a business has provided valid information about itself
by looking up its presence online and verifying its existence through
phone calls or postcards,

o Verifying previously extracted facts to ensure accuracy, and

o Identifying new facts about existing entities (e.g., what was Abraham
Lincoln’s date of birth?).

Data cleaning and normalization, along with data extrac-
tion, appeared to comprise some of the most fundamental and
business-critical applications of crowdsourcing for the compa-
nies that utilized it.

While not the most popular tasks across the participants, data cleaning
and normalization, along with data extraction (next), appear to comprise some
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of the most fundamental and business-critical applications of crowdsourcing
for companies that utilize it.

7.1.7 Data extraction

Another motivating application for crowd-powered database systems is data
extraction; i.e., extracting and providing information from other sources.

Five of 13 participants reported crowd-powered data extraction tasks.
While this use case has heavy overlap with many of the previous use cases,
we call it out because in two of the five organizations, data extraction was
their primary or only application area. Some of the reported uses of crowd-
powered data extraction included:

e Digitizing paper forms,

e Extracting facts about various entities (e.g., people, businesses) from
webpages,

o [ ead generation by identifying key contacts at various companies (e.g.,
identifying the CEO of IBM), and

e Extracting structured data from images, PDFs, Word documents,
HTML documents, and Flash animations.

7.1.8 Text generation

Five of the 13 participants perform some form of text generation with crowd
workers. Text generation applications are somewhat more subjective and cre-
ative than other use cases, and included:

e Researching a company and writing a blurb about it,
e Writing product descriptions for new products,
e Summarizing news articles, and

e Rewriting content so that it achieves better search engine optimization.
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Prior solution # Participants ~ Notes

Didn’t solve the problem 4 One participant claimed “Most of these problems we
didn’t solve at all” while enumerating tasks such as lead
generation, data extraction, classification, and text gen-
eration.

Manual labeling by in-house employees 4 In some cases, developers and researchers would label
enough data to train an algorithm just well enough

External contractors 4 Example: one organization, whose primary task in-
volves high-scale data entry, previously solved a now-
crowdsourced task by contracting the work out to typ-
ists.

Too young to know otherwise 2 A participant explained, “Fortunately, we always had
crowdsourcing as long as we have been running our
company.”

Table 7.2: Various ways in which organizations solved problems prior to turning to crowd-
sourcing. Some organizations reported multiple prior solutions.

7.2 Prior approaches

To help gauge the effect of crowd-powered data processing systems on orga-
nizations, we prompted participants with a free-response question “How did
you solve these problems before crowdsourcing?” In their responses, a spec-
trum of solutions emerged, which we now summarize. In Table we ag-
gregate the number of responses that fell into each category. Note that some
organizations did not respond to this question, while others solved differ-
ent problems via different means, and thus their answers reported more than
once.

Too young to know otherwise. Two companies we spoke with were started
after the growth in popularity of crowdsourcing. One participant explained:
“Fortunately, we always had crowdsourcing as long as we have been run-
ning our company. I can’t imagine any affordable way to have done many
of these things without crowdsourcing. Attempting to solve these problems
would have simply been out of bounds.” As we see below, more established
companies arrived at solutions before the advent of paid crowdsourcing, but
the sentiment of this response underscore the ease with which crowdsourcing
helps in data processing tasks, and how much of an essential ingredient it is
to modern-day data processing.

Didn’t solve the problem, sometimes working around it. Four organiza-
tions walked the line between not having solved the problems and solving



90 Survey of Industry Users: Use cases and Prior Approaches

related problems in automated ways. One participant claimed “Most of these
problems we didn’t solve at all,” while enumerating tasks such as lead gener-
ation, data extraction, classification, and text generation. Other participants,
for classification tasks, made do without human-provided labels for certain
applications, one of them opting for “automated mechanisms with less scale
and quality.” The response of this group of participants, along with that of the
“too young” category, underscore the variety of tasks that were previously
difficult or impossible to perform at the price points and low fixed costs that
crowdsourcing enabled.

Manual labeling by in-house employees. Four of the organizations, who
were amongst the larger ones we interviewed, solved certain human-in-the-
loop problems with the help of full-time in-house employees. In some cases,
developers and researchers would label enough data to train an algorithm just
well enough. In other cases where larger scales was required, organizations
formed teams of full-time in-house employees whose job was to provide hu-
man input for processing large datasets.

External contractors. Four organizations received human input from con-
tract workers. One organization, whose primary task involves high-scale data
entry, previously solved a now-crowdsourced task by contracting the work
out to typists. The other organizations sought different groups of contractors
to solve their varied tasks.

Note that the last two categories of prior solutions start to approach the in-
house platforms, currently adopted by many of the large organizations. Thus,
even before the advent of internet-enabled crowdsourcing marketplaces as we
know it, many of these companies were already crowdsourcing via external
contractors.

We found two anecdotes to be particularly telling of the dynamics of the
spectrum above. The first comes from an organization that predates crowd
work. Having solved their problem with contract workers, each task design
required multi-page guidelines and a multi-layer reviewer hierarchy. As they
learned which workers were most trustworthy, the organization gave those
workers access to the most challenging problems, often with less guidelines.
Given how close this workflow is to a crowdsourced one, the organization
found benefit in the more flexible recruiting capabilities that crowdsourcing
allowed as crowd work platforms availed themselves.



7.3. Benefits of crowdsourcing 91

The second anecdote highlights the benefit of in-person contract workers
over crowd workers in certain scenarios. One participant was incorporated
after the birth of several crowdsourcing marketplaces, and almost exclusively
performs its human-in-the-loop data processing tasks with crowd workers.
Still, when prototyping particularly challenging interfaces and tasks, the or-
ganization brings in contract workers that engage with developers on-site for
months at a time, reducing the communication that remote and often distant
crowd work opportunities introduce. The on-site contractors help the organi-
zation more quickly iterate on guidelines, improve interfaces and catch bugs
than the crowdsourced marketplaces allow.

7.3 Benefits of crowdsourcing

In a second free-response question, we asked participants to sell us on why
one should use crowdsourcing at all, with a prompt of “In your words, what
are the benefits of crowdsourcing? How do you sell it within your organi-
zation?” We now describe the common responses, which are summarized in
Table

“It’s the only way to do a bunch of things at an affordable cost.
So it’s often a question of whether we want to solve certain prob-
lems at all. Once we opt to solve those problems, crowdsourcing
isn’t optional.”

Flexibility to scale up/down. Seven organizations highlighted the flexibility
of workforce size as a key benefit of crowd work. One participant explained
that “we can ramp up needs ad-hoc without having to plan ahead and commit
to specific uses.”

Price. Seven participants mentioned price as a consideration for crowd-
sourced labor. Because marketplaces allow for contracts with crowd workers
all over the world, it is easier to find workers at price points that make var-
ious tasks feasible. As one participant explained, “It’s the only way to do a
bunch of things at an affordable cost. So it’s often a question of whether we
want to solve certain problems at all. Once we opt to solve those problems,
crowdsourcing isn’t optional.”
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Benefit # Participants ~ Notes

Flexibility to scale up/down 7 “we can ramp up needs ad-hoc without having
to plan ahead and commit to specific uses.”

Price 7 “It’s the only way to do a bunch of things at
an affordable cost. So it’s often a question of
whether we want to solve certain problems
at all. Once we opt to solve those problems,
crowdsourcing isn’t optional.”

Enabling previously difficult or impossible tasks 6 Six organizations identified tasks that they
simply didn’t solve until they were able to
benefit from crowdsourced human input.

More/varied data 5 “our internal full-time employees would not
be willing to provide millions of labels the
way our crowd workers do.”

Free up time 2 “use crowdsourcing to free up our own
time...or to scale it out.”

Quality higher than algorithms 2 One organization gave examples of photo
moderation and OCR, which, when solved us-
ing purely algorithmic solutions, did not pro-
vide high enough quality to utilize on their
datasets.

Table 7.3: Various benefits of crowdsourcing that participants cited. Participants could provide
more than one benefit.

Enabling previously difficult or impossible tasks. In an echo of their re-
sponses to how they solved various tasks before crowdsourcing, six organi-
zations identified tasks that they simply didn’t solve until they were able to
benefit from crowdsourced input.

More/varied data. Five participants identified the number of readily avail-
able workers on some platforms as a benefit when diversity of opinion or per-
sistence at a tedious task mattered, with one participant explaining that “our
internal full-time employees would not be willing to provide millions of la-
bels the way our crowd workers do.” Another high-volume participant viewed
this benefit through the lens of the high throughput of responses their appli-
cation required. One organization that provided survey-like tasks to workers
mentioned that although their organization is quite large, certain tasks require
a level of expertise (e.g., surgeons or cardiologists) that the company does not
always have ready access to.

Free up time. Two participants, both of whom are members of small teams
within larger organizations, identified crowdsourcing as saving them time as a
force multiplier. One participant explained that given that their teams couldn’t
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grow in size by traditional means, they “use crowdsourcing to free up our own
time...or to scale it out.”

Quality higher than algorithms. Two organizations identified crowd re-
sponses as being of higher quality than some algorithms. One organization
gave examples of photo moderation and OCR, which, when solved using
purely algorithmic solutions, did not provide high enough quality to utilize
on their datasets.

We close this section with two competing and telling quotes. In the first, a par-
ticipant explains what they see as the value of crowd work, highlighting many
of the areas above: “Conceptually the big benefit is flexibility. We can ramp
up needs ad-hoc without having to plan ahead and commit to specific uses.
Practically, the benefit is training data and evaluation. Crowdsourcing helps
us get new products/features out the door faster, both by giving us more/d-
ifferent data to learn from and by helping us [figure out] where we stand in
terms of accuracy.”

The second quote offers a word of caution. While crowdsourcing affords
organizations fast turnarounds on a variety of data processing problems, it
does not come without an investment: “Don’t underestimate the difficulty
[of] asking questions and iterative design.”



8

Survey of Industry Users: Task Quality, Worker
Incentives, and Workflow Decomposition

In this chapter, we describe how crowdsourcing workflows are developed,
designed, and tested. In particular, we consider quality management in Sec-
tion [8.1] incentivization of workers in Section [8.2] and task decomposition in
Section 8.3

8.1 Ensuring Quality

Crowd workers could provide low-quality or incorrect responses for many
reasons: poorly-written or unclear instructions, lack of necessary skills, the
inherent hardness or subjectivity of tasks, malice, laziness, or fatigue.

With quality control measures, typically reliant on some form of redun-
dancy (i.e., having multiple workers attempt the same task), crowd-powered
workflow developers can ensure that the eventual results are of high quality.
Along the way, many of these quality control or management schemes also
identify skill-sets or accuracies of workers.

In this section, we study participants’ approaches to these problems.

8.1.1 Techniques for evaluating task quality

The crowdsourcing literature is rich with algorithmic approaches to deter-
mining the individual and aggregate accuracies of workers and tasks (Sec-

94
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Techniques # Participants

Simple aggregation techniques (e.g., majority vote)

9
Crowd workers review other workers 8
Expectation Maximization (EM) 7

7

Maximum Likelihood

Table 8.1: Approaches that participants reported utilizing to algorithmically evaluate a task’s
result quality as multiple workers provide responses.

tion [2.3.2). We surveyed participants on the styles of quality control ap-
proaches they utilize when requesting that multiple crowd workers redun-
dantly provide responses to a task. Participants reported using multiple tech-
niques. We summarize these responses in Table [8.1]

The most popular family of approaches for ensuring task quality involve
simple aggregation measures, such as reporting the response that received the
majority vote. Nine participants reported utilizing such techniques, likely due
to their implementation simplicity and efficacy at eliminating poor worker
responses.

An equal number of participants (7) reported using either expecta-
tion maximization (EM)—or maximum likelihood-style techniques. While
these techniques often go hand in hand, they are different. In EM-style ap-
proaches [66], we repeatedly converge on worker quality estimates and best
answer estimates by iteratively fixing one and optimizing the other, until our
estimates no longer improve. These approaches do not assume the worker
accuracy or quality is known beforehand. Maximum likelihood-style ap-
proaches start with the assumption that worker quality values are known up-
front, and infer the highest probability response per task given those values.
Worker quality estimates may be obtained by having workers perform test
tasks for which correct answers are known before they start attempting tasks
for which answers are not known.

All of the approaches described so far involve an algorithm inferring an
accurate response given several workers’ redundant responses. Eight partici-
pants reported using a different approach, in which another set of workers is
provided with previous worker responses, and is asked to identify or verify
a correct response. The mechanism by which the second set of workers pro-
vides a correct response varies: workers may directly correct prior workers’
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work, or they might vote on the response or responses that are most accu-
rate. While this approach is not reliant on complex algorithmic analysis, it
balances that algorithmic simplicity with more task and interface design for
crowd-powered verification, as well as the additional cost of compensating
the second set of workers that perform verification and review. This not un-
like the approaches adopted by Turkit [[126] and Soylent [36]].

Eight participants reported using a different approach, in which
another set of workers is provided with previous worker re-
sponses, and is asked to identify or verify a correct response.

Several participants noted that while complex approaches tend to serve them
well, it is also the case that complexity is not always required. If one estab-
lishes longer-term relationships with workers, trust and improved communi-
cation can often render quality estimation and management less necessary.

8.1.2 Evaluating worker output quality

As we saw in the last section, several participants found that evaluating a
worker’s overall work quality or accuracy is often a useful step in ensuring
high aggregate task quality.

All of the participants measured and maintained estimates of worker qual-
ity, but differed on the approaches employed, and the ephemerality of the
measurement. Smaller teams tended to use less of these approaches than
larger ones, but all teams employed at least one, and most teams employed
several. When using a platform such as CrowdFlower, worker output qual-
ity is provided automatically by the platform (this is presumably also true if
a company has its own internal platform), though even in these situations,
participants tended to maintain their own independent estimates of worker’s
output quality. We summarize common approaches to determining worker
quality in Table[8.2]

The two most popular approaches to determining a worker’s output qual-
ity were gold standard questions and disagreement-based schemes. Each ap-
proach was employed by all but one participant, with a different participant
avoiding each technique respectively. Gold standard questions are questions
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Technique # Participants
Disagreement-based schemes 12

> Expectation Maximization (EM) 6
Gold standard questions 12

> Quizzes/qualification 8
Review/verification by other workers 9
Task completion speed 8

1

External measures (e.g., education, background)

Table 8.2: Approaches to determining a worker’s quality given their responses. Participants
might report using multiple approaches.

with known answers that are distributed throughout a worker’s workload and
can be used to either signal that a worker is completing tasks correctly or edu-
cate or warn the worker if they make a mistake. Disagreement-based schemes
generate a worker output quality metric based on their overall agreement with
other workers who answered the same question. For instance, one simple
disagreement based scheme would penalize a worker with O every time the
worker disagreed with the majority response, and would reward the worker
with a +1 every time the worker agreed: the quality of the worker would
simply be the sum of these scores divided by the number of questions at-
tempted. Yet another more complicated disagreement scheme would be to
use the Expectation-Maximization (EM) estimate of worker output quality as
described in Section [8.1.11

The two most popular approaches for determining a worker’s
output quality were gold standard questions and disagreement-
based schemes. Each approach was employed by all but one par-
ticipant, with a different participant avoiding each technique re-
spectively.

Beyond gold standard questions and disagreement-based schemes, there
were other approaches that were still popular. About two thirds of partici-
pants reported using the output of other workers’ reviews or verification to
estimate worker output quality. About two thirds of participants reported em-
ploying qualification tests to quiz workers prior to the start of their actual
work, though some participants were concerned with the validity of the per-
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formance of a worker on an explicit test. This is because workers could easily
pay attention and do well on the test and then proceed to not pay attention
and do poorly on actual tasks. Note that these participants also answered pos-
itively for the gold standard approach, since qualification tests are essentially
gold standard questions, but used at the start of the work. About half of partic-
ipants reported employing expectation-maximization schemes to simultane-
ously estimate worker output quality alongside aggregate task quality. Once
again, these participants also answered positively for the disagreement-based
schemes approach.

In addition to worrying about worker output quality, about two thirds of
participants were also concerned with another worker-related metric: speed.
Most crowdsourced workflows implicitly or explicitly compensate workers
for the time they spend on a task, and measuring the efficiency with which
a worker completes a task is important to maintaining a reasonable cost per
task. It is also possible for workers complete tasks too quickly, which might
signal a work quality issue.

While we explicitly asked about it, only one of the participants re-
ported using external measures such as education or background
to identify high-quality workers, opting to allow a worker’s per-
formance to speak for itself.

Several participants reported other quality estimation techniques. One largely
single-case user with a complex workflow used the aggregate degree of agree-
ment with computer vision techniques to determine how well workers per-
formed on vision tasks. Several participants also reported manually vetting
the quality of workers’ output well after an initial hiring and bootstrapping
phase would have completed. Finally, while we explicitly asked about it, only
one of the participants reported using external measures such as education or
background to identify high-quality workers, opting to allow performance (as
opposed to background, ethnicity, or demographics) to speak for itself.

8.1.3 Frequency of worker performance evaluation

As crowd workers perform tasks over a period of time for a given requester,
their performance on the type of task provided by the requester may change,
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both for the better (e.g., gaining experience and learning along the way) or
for the worse (e.g., having difficulty concentrating through monotony). We
asked participants to explain how frequently they evaluate worker perfor-
mance. The majority of respondents (8) re-evaluate worker quality on every
answer, continually updating their view of the worker’s overall performance.
A considerable group (5) only periodically updates their view of a worker’s
performance.

The majority of respondents (8) re-evaluate worker quality on
every answer . .. A considerable group (5) only periodically up-
dates their view of a worker’s performance.

As it turns out, it is not the case that continual evaluation is necessarily
the better approach. Re-evaluating worker performance too frequently might
result in adverse knee-jerk reactions to natural noise in a system, for example.
One participant identified this balance, and explained that they adopt differ-
ent strategies in different situations. In situations where overall task quality is
a concern and the participant hasn’t previously vetted the workers, the partic-
ipant explained that they rely on Expectation Maximization (EM)-style tech-
niques, writing that “I don’t really evaluate quality of other workers (except
implicitly, on the rare occasions I use an EM algorithm), as I only care about
task-level quality in the cases when I don’t use my custom pool.” The cus-
tom pool this participant refers to is a set of workers that have previously
proven themselves, and the participant goes to this crowd for quick, reliable
work, without any repeated performance evaluation. The participant treats
this group differently, explaining that “For my custom pool of workers, I'll
do an upfront check when creating the pool, and periodically (every quarter
or half-year or so, ...) check that they’re still going strong.”

8.1.4 Benefiting from more advanced algorithms

We asked participants how they thought they might benefit from more ad-
vanced quality algorithms (such as those in Chapter [3)) to reduce their cost.
Post-hoc, we realized we had asked a leading question that might have
skewed responses toward claiming perceived benefit, so we do not report
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them in aggregate. The question did, however, elicit several lively free re-
sponses against more advanced algorithmic approaches, which we now re-
port.

One of the largest participants by weekly volume responded that because
of their volume, evaluating worker quality would exclude too many inputs,
and that simple techniques to ensure aggregate task quality was all they could
use to sustain volume: “Maybe by giving worker with excellent track record
higher weight, there could be some savings. However, we did not see there
would be big enough savings for us to justify the effort. Perhaps a readily
available algorithm will change our mind. Our operation is high volume/low
cost per task. Excellent workers only work on a small portion of the total.”

One participant explained that algorithms aren’t as effective on qualitative
tasks. They expanded that “Most answers are richly qualitative or based on
consensus. Manual review and agreement are safeguards enough.”

Finally, a participant highlighted the benefit of vetting trusted pools of
workers ahead of time: “[The] answers I get tend to be accurate enough al-
ready (even if I place only a single worker on the task).”

8.1.5 Communicating feedback

A learning opportunity arises each time a crowd worker makes an error on a
task. We asked participants if and how they communicate feedback to work-
ers. Of all participants, 8 claimed to provide any sort of feedback to workers,
while 4 provided none. Generally, we found that larger teams and teams that
manage the internal platform tended to have more mechanisms for providing
feedback than the smaller teams.

We also found reasonable diversity in the forms of feedback participants
provided to crowd workers. One participant found great value in immedi-
ate per-task feedback. Having experimented with around two dozen incentive
mechanisms, they found that immediate feedback was the most important
and effective one. In particular, this participant found that providing incorrect
workers the correct answer immediately, and affirming correct workers im-
mediately, gave crowd workers a sense that the participant cares about their
input. The participant explained that “Even if [we] don’t know perfect an-
swer, [we] tell the worker what the machine decided [so far based on other
answers or a prior]. The worker can provide a rebuttal if they disagree. This
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gives instantaneous feedback, but user can still challenge it.”

“Even if [we] don’t know perfect answer, [we] tell the worker
what the machine decided [so far based on other answers or a
prior]. The worker can provide a rebuttal if they disagree.”

Another participant was more concerned about higher-level feedback to
develop their crowd workers’ skills. The participant expanded that “[T]his
is an area where we wish we could give feedback sooner, and to classify
high-level mistakes. If a reviewer repeatedly changes an entry-level worker’s
tasks, we’d like to tell the worker ‘it looks like you consistently fail on, say,
capitalization, and here is a document you can read to improve your work’.”
Several participants echoed this desire to actively improve their feedback,
specifically if they can detect that the worker is consistently making a certain
type of mistake.

8.2 Incentives

An important component in building crowd-powered systems and workflows
is the incentive mechanisms in place for crowd workers. Incentives can im-
pact response speed, accuracy, and in general, the effort put into providing
the answer. Our participant base is biased heavily toward users of paid crowd
work, and so many of the incentives that surfaced involved some form of
monetary compensation, but other interesting mechanisms surfaced as well.

8.2.1 Popular Incentive mechanisms

We asked participants to describe the incentive mechanisms they utilize with
their crowd workers. We prompted the participants to describe both monetary
and non-monetary incentives. While monetary compensation was by far more
popular, participants also described other mechanisms. We summarize these
findings in Table [8.3]

At a high level, our participants primarily rely on per-task payments
along with bonuses, while some participants use hourly payments (primar-
ily for workers who are trusted), non-monetary incentives like leaderboards
and gamification, as well as promotions along a hierarchy.
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Mechanism # Participants

Notes

Per-task payment 11

Example: pay 5 cents for completing each task. More com-
plex per-task payment schemes exist: one participant esti-
mates the difficulty of a task given the number of button
presses, mouse movements, wait time, and mental prepara-
tion, to determine how much to compensate a worker.

Bonus-based payments 10 Crowd workers are incentivized to reach certain higher-level
goals (e.g., speed or quality) across several tasks and are com-
pensated with a bonus for their efforts.

Hourly payments 6 Example: pay $10 per hour of work.

Gamification 4 Example: Awarding points and badges for accomplishments,
like completing 1000 tasks without error.

Leaderboard 4 Example: Our top ten fastest workers this week were: ...

Hierarchy of statuses with promotions 3 Example: help manage the crowd if you do well enough.

Table 8.3: The various incentive mechanisms used to encourage worker performance. Partic-
ipants could report more than one mechanism.

Our participants primarily rely on per-task payments along with
bonuses, while some participants use hourly payments (primar-
ily for workers who are trusted), non-monetary incentives like
leaderboards and gamification, as well as promotions along a
hierarchy.

Given the heavy microtask bias of our participants, the most popular mon-
etary incentive pay mechanism was a per-task payment, which 11 of our par-
ticipants used. While these payments are typically the same for each task, one
participant made use of keystroke-level models (KLM-GOMS [49]]), a model
that estimates the difficulty of a task given the number of button presses,
mouse movements, wait time, and mental preparation, to determine how
much to compensate a worker. The next most popular payment model (10
participants) was a bonus-based one, where crowd workers are incentivized
to reach certain higher-level goals (e.g., speed or quality) across several tasks
and are compensated with a bonus for their efforts.

Finally, 6 participants compensated some or all of their crowd workers
on an hourly basis rather than a per-task basis. One participant explained
that they start all workers off with a per-task payment, and shift only trusted
workers to hourly rates. They noted that certain workers’ throughput degrades
when switching to hourly payments, and so this participant only finds hourly
work meaningful if they have worked with that worker long enough to appre-
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ciate their work quality and integrity, and if a task type arises wherein it is
difficult to estimate the task requirements and difficulty up front.

Fewer participants made use of non-monetary incentive mechanisms.
Four participants made use of various forms of gamification [185]. Four
participants maintained some form of leaderboard to publicly recognize the
highest-performing crowd workers (possibly in terms of quality or amount of
work done).

Finally, while most participants claimed a flat organizational model, three
utilized a hierarchical model that allowed them to use promotions to higher
statuses or more interesting positions as an incentive mechanism. We find this
last model particularly interesting, because it indicates a move toward more
traditional employment practices.

8.2.2 Worker classes and differing incentives

We next asked participants whether they have different classes of workers,
and if so, what those classes were. About half of the participants responded
that they did have different classes of workers, while the other half did not.
Larger organizations with more use cases for their crowd work tended to dif-
ferentiate workers, while smaller organizations did not.

Larger organizations with more use cases for their crowd work
tended to differentiate workers, while smaller organizations did
not.

Two forms of worker classes arose: skill-based and trust-based. In the
skill-based system, workers with particular expertise (e.g., the ability to speak
a particular language) were placed in a worker class that could process rel-
evant tasks requiring that expertise. In the trust-based system, manual or
automated processes determined the quality of a worker’s responses over
time, and placed workers with desirable qualities into more trusted classes,
which were compensated more for their achievement or allowed to perform
more challenging or interesting tasks. One participant created a hierarchical
review-based system [118, 91]], in which more trusted workers would review
and spot-check the work of workers who had yet to gain trust in the system.
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Participants placed significant value on incentivizing trusted workers to
continue to work with them. One participant explained that finding the best
workers was less important than finding reasonable performers: “In my expe-
rience, the difference between good workers and unknown workers is much
more important/impactful than the difference between good workers and
great workers or workers with different specific skills.”

“...the difference between good workers and unknown workers
is much more important/impactful than the difference between
good workers and great workers or workers with different spe-
cific skills.”

When we asked participants how the incentive mechanisms for different
classes of workers differed, many responded that aside from pay rate or type
of task, there was not much investment in differing incentive mechanisms.
Workers generally did not have much transparency into different incentive
schemes. One participant explained that there was “[no] transparency, except
for the fact that they can expect to receive a steady stream of work from
us should they perform well.” Some participants wanted to provide more
transparency into the process to workers, with one participant explaining that
“workers know our schemes, but often complain that they don’t know when
they will be promoted...We send them weekly emails to say how they rank,
but this can’t predict when we’ll have an opening for a [more lucrative posi-
tion].”

8.3 Task design

From microtasks to complex work, verification to redundancy, there are many
designs to crowd-powered data processing workflows (Chapter ). We asked
participants about the types of workflows they design for their crowd workers,
and summarize them below.

8.3.1 Crowd-Machine integration

One promise of crowd work is that it helps bridge the gap between the capa-
bilities of machine learning algorithms and the abilities of crowds to process
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Integration ~ # Participants ~ Notes

Train 12 Crowd workers provide training data for automated classifiers, and at a certain
point the classifiers process all subsequent tasks.

Vet 11 Crowd workers verify or evaluate the output of multiple algorithms.

Uncertain 8 Only when an algorithm is uncertain of a decision does a workflow reach out to
crowd workers for a decision.

Standalone 7 Crowd workers complete all of the work in a data processing workflow.

Active 5 Algorithms identify which data to send to crowd workers for further training in an

active learning loop.

Table 8.4: The various ways in which crowd workers and machine learning algorithms are
integrated. Participants could report more than one approach.

unstructured information. We wanted to understand how practitioners bridge
this gap: are they relying more on crowds or more on machine learning? How
are these two options used in parallel? We asked workers to identify which
forms of crowd-machine integration they employ, and summarize responses
in Table

The most popular approaches were Train (12 participants train some au-
tomated classifiers) and Ver (11 participants assess the quality of their models
with crowd worker input). While 8 participants only send Uncertain algorith-
mic decisions to the crowd for quality purposes, 7 use crowds in a Standalone
fashion with no subsequent modeling or learning. Finally, 5 participants em-
ploy closed-loop Active learning, in which the crowd worker responses to
uncertain algorithmic decisions are used to retrain future models.

One pattern to note is that, of the crowd-machine hybrid models, the
popularity of the three approaches decreases as the complexity of the ap-
proach increases. Train is the simplest and most popular model, Uncertain
is more complex but used by the majority of participants, and Active is the
most complex and least popular. None of the participants we classified as
largely single-case user personas employ active learning, and the approach is
typically more popular with the multi-case users or internal providers. One
participant explained that for one project, they transitioned through the three
models in order of complexity as the maturity of the team and needs of the
project grew. This suggests that if a researcher or practitioner built an acces-
sible and reusable framework that simplified active learning, they might have
an audience that could benefit from these techniques, as potential users don’t
have the resources to build the tools themselves.
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8.3.2 Use of frameworks

In Chapter 4] we described several tools for declarative and imperative spec-
ification of crowd work, with the aim of reducing developer load, and seam-
less optimization [126 (144, 180, 116} [133| 22] for common crowdsourcing
operations. We asked participants about their use of such tools, frameworks,
libraries, and third-party APIs. We summarize these in Tables [8.5]and [8.6]

Surprisingly, no participants utilized third-party frameworks to
simplify their crowd-powered data processing workflows.

Surprisingly, no participants utilized third-party frameworks to simplify
their crowd-powered data processing workflows. Six participants claimed to
use internally generated frameworks for simplifying their task design. Eleven
reported utilizing a low-level API for accessing a service for posting, retriev-
ing, and paying for tasks. Six of those reported implementing against the
Mechanical Turk API, three against the CrowdFlower API, and two against
the oDesk API.

It appears that participants only utilized APIs in as much as they provided
low-level payment and task creation functionality. For the crowd-powered
systems-building community, these findings can be interpreted in two ways.
First, it suggests that the community might need to better communicate its
contributions and deliver them as usable open source artifacts if they intend
to have impact on industry users. Second, it might suggest that teaming up
with industry users to learn what high-level constructs they have baked into
their frameworks might result in inspiration for more principled contributions
from the systems builders.

8.3.3 Task decomposition

One area of active research in crowd-powered workflow design is in task de-
composition, i.e., decomposing a large job into smaller tasks [116} (91} 119}
114]]. We asked participants whether their workflows feature mostly micro-
tasks (e.g., simple yes/no questions that are asked redundantly of several
crowd workers) vs. macrotasks (e.g., complex work that might take several
minutes or hours to complete, and is hard to reconcile across redundant work-
ers).



8.3. Task design 107

Tool # Participants Marketplace integration  # Participants
Marketplace integration 11 Mechanical Turk 6
Internal framework 6 CrowdFlower 3
Third-party framework 0 Upwork 2

Table 8.5: Tools used by participants Table 8.6: The API integrations with

to simplify their crowd-powered various marketplace providers that
workflow development. Some par- participants reported implementing.
ticipants reported utilizing multiple Some participants utilized multiple
tools. platforms.

Of 11 respondents, five claimed to entirely utilize microtasks, one
claimed to use primarily microtasks, and five claimed to use both
models about equally frequently.

Of 11 respondents, five claimed to entirely utilize microtasks, one
claimed to use primarily microtasks, and five claimed to use both models
about equally frequently. Two participants explained that their largest spend-
ing rate on crowd work was on macrotasks. One participant proposed that, in
their experience, decomposing large jobs into redundant microtasks provided
better results. These responses suggest that while crowd-powered workflows
that rely on workers completing complex tasks are feasible, task decomposi-
tion is a area of research that is based on real business needs.

8.3.4 Multistep workflows

As in more traditional industrial workflows, complex crowd-powered work-
flows sometimes require more than one step with human involvement (per-
haps in different capacities). If we think about a crowdsourcing step as a sin-
gle user interface coupled with some algorithmic computation (e.g., a crowd-
powered filter operation, or an active learning loop), it is interesting to explore
how often real workflows employ multiple steps. For example, the Find-Fix-
Verify [36] design pattern involves three sets of crowd workers to focus on
the individual finding, fixing, and verification steps.

Many participants reported that none of their workflows have
more than crowdsourcing step.
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We asked our participants what fraction of their workflows involve more
than one crowdsourcing step. Many participants reported that none of their
workflows see this. Of eleven respondents, two participants explained that
half of their workflows involve more than one step, and four explained that
they rarely employ more than one crowdsourcing step. One participant was
particularly pessimistic about multistep workflows, explaining “In my expe-
rience, if you need multiple steps of crowdsourcing, it’s almost always more
productive to go back and do a bit more automation upfront.” It is interesting
to note that while industrial crowdsourcing systems are complex (they require
teams and budgets of reasonable sizes), the complexity doesn’t stem from the
design and maintenance of multi-step workflows.

These findings can be interpreted in two ways. On one hand, a good
amount of research efforts have gone into complex multi-step workflow de-
signs for crowdsourcing, and it is unclear that practitioners needs these tools
at the moment. On the other hand, we are still in the early days of crowd-
powered workflow development, and as more research bears the fruit of high-
level creative and knowledge work [[159], the need for multi-step and more
involved workflows might become more apparent.

8.3.5 Design patterns

A common set of crowd design patterns and primitives is arising in the aca-
demic research literature. We asked participants about their use of three pop-
ular patterns as well as any other they would like to share. The three we
asked about were iterative refinement [126], find-fix-verify [36], and do-
verify [21},91]. Iterative refinement allows workers to build on other workers’
output in sequence. Find-fix-verify asks three groups of workers to identify
issues, propose fixes to those issues, and identify the best eventual outcome.
Do-verify relies on a hierarchy of trusted workers that review, correct, and vet
work that entry-level workers complete.

While only four participants claimed to use at least one of these
patterns [iterative refinement, find-fix-verify, or do-verify], all
three patterns appeared equally popular.
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While only four participants claimed to use at least one of these patterns,
all three patterns appeared equally popular. Another participant explained that
they combine several stages from a collection of the three workflows above,
but did not provide additional detail. Like our findings on complex workflows,
it is unclear whether the low adoption of these patterns is a signal that these
crowd-oriented design patterns are not terribly useful in practice, or whether
they will see more use as the kind of crowd work that practitioners explore
necessitates these more complex patterns.

8.3.6 Design iterations

In as much as building crowd-powered workflows is an engineering task, it
is also a design task. We asked participants how much iteration went into
task design, and received varied answers. Almost all participants actively it-
erate on their designs. The two that claimed to not do design iterations are
some of the largest single-workflow users, and as a result of early iteration,
have reached a level of output quality that they are pleased with and aren’t
incentivized to change.

The most common response we received was around small, incremen-
tal updates to designs. One larger participant explained that “[we] do build
some initial prototypes and then get initial feedback. If the question is vague
or guidelines are not enough or if the question is too difficult in some cases
then we iterate. It helps a lot, and our workers like that.” Another partici-
pant echoed a similar viewpoint, that “Most teams don’t get everything right
the first time, but generally only need to make incremental changes to make
further improvements.” Most participants actively reached out to workers for
feedback, which helped drive their future task design and development.

At the other end of the spectrum, there were participants that spent a lot
of time on task redesign. Only one participant (an internal crowdsourcing
provider) explicitly called out A/B testing, or randomized testing in which
different workers are presented with the same task in different ways to see
which design is more effective. This participant also referred to task design
as an art, and displayed a hands-on mentality toward design.
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8.3.7 Crowd worker communication, interaction, and collabora-
tion

Entire communities of researchers, like the Computer-Supported Coopera-
tive Work [7] community, have been formed around human-human interac-
tion techniques in traditional work environments. When we asked participants
about their use of such tools and techniques to facilitate interaction between
crowd workers, few reported back any such infrastructure.

One participant set up mailing lists and chatrooms for their crowd work-
ers, and engaged on message boards such as TurkerNation [16] and Cloud
Me Baby [4]. Another participant, in addition to email and chatrooms, al-
lowed entry-level workers and reviewers to leave notes for one-another on
individual tasks to facilitate learning experiences. Three other participants
reported some form of interaction tools, but did not specify details. Aside
from facilitating interaction, no participant designed tasks with active crowd
worker collaboration in mind.

It is clear from the existence of message boards such as TurkerNation
that crowd workers benefit from advice, training, and knowledge-sharing, but
it is also clear that support for such interaction has not been built in by many
practitioners. Designing tools and frameworks to facilitate such interaction
might result in fruitful research going forward.



9

Survey of Marketplace Providers of
Crowdsourcing

In the previous chapter, we described the results of surveys and interviews
we conducted with industry users of crowd work. We now turn to another
group: the providers of public marketplaces where crowd workers and these
industry users can find one-another. We used a similar methodology as de-
scribed in Section to identify and interview four crowdsourcing market-
place providers. The questions we asked the providers can be found in Ap-
pendix [B] with a summary of the overall question types in Table[9.1]

Whereas the industry user survey allowed us to speak with people at var-
ious levels throughout their respective organizations, in our marketplace sur-
vey we spoke exclusively with company leadership. At the four marketplaces,
we received responses from two CEOs, one Senior Director, and one VP of
Product. This bias toward leadership had the benefit that we could get good
high level descriptions from each participant, with the drawback that some of
the descriptions of implementation details were not as deep. Where possible,
we reconstructed such details by exploring each platform ourselves.

We will first describe the four marketplaces we interviewed, summarize
some high-level observations, and then compare and contrast the market-
places in detail across the various questions we asked. We cover statistics
about marketplaces in Section[9.2] implementation details: task creation, task
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Section # Questions  Paraphrased Example Questions

Crowd characteristics 6 — What is the approximate age/gender/geographic/education distribu-
tion of your crowd?
— What fraction of your crowd uses your platform as their primary job?

Implementations 9 — What fraction of the tasks in your marketplace are microtasks versus
macrotasks?
— How do you match workers to tasks? (topics include requesters pick-
ing workers, workers picking tasks, automatically match workers to
tasks, etc.)

Statistics 6 — What is the distribution of spending per requester?
— Do you ever observe an imbalance between the number of workers
and number of tasks at any point?

Quality assurance 4 — What mechanisms do you use to infer worker trustorthiness? (topics
include worker education level, engagement on platform, accuracy, etc.)

Table 9.1: A summary of the types of questions we asked participants either through a survey
they filled out on their own time or through phone interviews. The example questions provided
are paraphrased descriptions. Detailed questions can be found in AppendixE}

types, and matching in Section [9.3] and then cover quality control in Sec-
tion[9.41

9.1 Executive Summary

Marketplaces vary widely in their mission, their target requesters, their target
workers, their demographics, and the type and format of the work available
on each platform. We’ve picked four representative ones that operate rela-
tively differently from one another, offering requesters varying choices of
task design, quality assurance mechanisms, and degree of self-service in the
process.

We now provide high-level takeaways from our interactions with partici-
pants. We provide more details in subsequent sections. The four marketplace
providers we interviewed are summarized in Table[9.2]

The ecosystem is quite fluid. In the time that we conducted interviews with
participants, one company (MobileWorks) changed its mission from being
a marketplace provider to providing a particular set of services (lead gen-
eration); two companies that were rivals (Elance and oDesk) merged into a
single company (first called Elance-oDesk, and rebranded to Upwork).

Marketplace providers comprise half of the space. In the industry surveys,
we found that industry users have a roughly 50%-50% split between utilizing
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Marketplace Total Crowd Workers Type of Marketplace Notes

CrowdFlower Millions Microtasking Requesters can design and post mi-
crotasks, and tune parameters for
the platform to manage a quality-
cost tradeoff through trusted work-
ers and redundancy.

Upwork Millions Macrotasking via Freelancers A market on which requesters and
contractors can find one-another
with a focus on payment and rep-
utation rather than the mechanics of
task delivery.

MobileWorks Hundreds to thousands Macrotasking Requesters create high-level tasks
without microtask decomposition
while paying workers fair hourly
wages.

Samasource Thousands Microtasking A mission-focused nonprofit that
provides requesters with projects
management and consultation on
task design while connecting them
with workers from marginalized
populations of mostly women and
young individuals.

Table 9.2: The marketplaces that participated in our survey, along with their approximate size
in crowd workers, and notes on each marketplace’s key points.

marketplaces for crowd work and hosting their own internal platforms for
crowd work, some of which are staffed through tightly controlled outsourcing
firms (Section [6.5). Our conversations with marketplace providers can thus
only describe options utilized by about half of our industry users.

The requester experience varies wildly by marketplace. On each market-
place, the expectations of which aspects of workflow management requesters
handle and which aspects the marketplace is responsible for are quite dif-
ferent. For example, whereas Upwork offers facilities for discovering, es-
tablishing, and paying for contracts (an agreement between a requester and
worker), CrowdFlower abstracts these concepts away and automates a lot of
the requester-worker relationship.

Worker demographics are quite different. On CrowdFlower and Mobile-
Works, the United States is listed as the top country of residence, whereas
on Upwork (according to oDesk), the top two countries are India and Pak-
istan and on Samasource, the top countries are India, Kenya, and Uganda.
Gender distributions differ by platform, with Samasource explicitly biasing
toward women in certain countries, CrowdFlower reporting 26% women in
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aggregate, and MobileWorks reporting 50% women. Finally, the educational
distribution is different, with CrowdFlower reporting 36% of workers without
a college degree, Upwork claiming workers are typically “College graduates
and above,” MobileWorks explaining that all workers have or are pursuing
college degrees, and Samasource explicitly focusing on populations with no
college degree or previous job.

Marketplaces have a worker-work imbalance. Every marketplace except
Upwork said that they encountered situations with “the number of available
workers being greater than the number of available tasks, and hence workers
have to wait.” CrowdFlower added that while this statement was true for its
entry-level workforce, its experienced tier of workers saw more demand than
they could fulfill.

The marketplaces differ significantly in throughput. Given their differ-
ent missions and requester experiences, there are several order-of-magnitude
differences in the number of workers or tasks completed per day on each
platform. Given that a some platforms (e.g., Samasource) focus on economic
and social opportunity, others (e.g., CrowdFlower) focus on self-serve user
interfaces for task management, and others yet (e.g., Upwork, MobileWorks)
focus on complex tasks, it is not meaningful to compare the systems based on
raw numbers, and it is also unreasonable to recommend a “best” platform.

Quality control approaches vary significantly. Given the differing work
formats that each platform offers (Section[9.3.1), and the differing availabil-
ity of training staff co-located with workers, the approaches to quality control
on each platform differ (Section[9.4). While CrowdFlower offers the most au-
tomated quality control measures, Upwork provides publicly available post-
task feedback and ratings, MobileWorks managers offer review of workers’
tasks, and Samasource offers in-person training based on spot-check reviews.

9.2 Marketplace Details

We now dive into each of the four marketplaces, providing details on aspects
like company mission, implementation of platform, demographics, and size.
An astute reader might note that Amazon’s Mechanical Turk is not one of
the marketplaces we include in this survey. We reached out to Amazon to
participate, but did not hear back.
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9.2.1 CrowdFlower

CrowdFlower was one of the first crowdsourcing marketplaces. CrowdFower
focuses primarily on providing industry users like data scientists access to a
large group of crowd workers that complete microtasks. It provides APIs and
user interfaces for requesters to design and populate tasks for crowd workers
to complete. Requesters generally leave quality control to CrowdFlower af-
ter providing gold standard examples for training and vetting workers, and by
setting quality and cost thresholds within which CrowdFlower automates task
redundancy. Requesters can either provide their own set of workers and utilize
CrowdFlower’s interface and quality control mechanisms, or source work-
ers from approximately 130 CrowdFlower channel partner{] that compen-
sate workers with items ranging from regular currency (e.g., ClixSense [3]),
cryptocurrencies (e.g., BitcoinReserve [[1]), and reward points that can be re-
deemed at various locations (e.g, Swagbucks [[15]).

CrowdFlower is relatively open with its crowd composition, publishing
results of surveys with its crowd [207]]. Nearly a third of its crowd workers,
called “contributors,” live in the USA (18% of contributors) and India (12%),
with other popular locations including the UK (6%) and Indonesia, Canada,
the Philippines, and Pakistan (4% each). The largest group of contributors
report having a bachelor’s degree (25%), with 20% reporting a high school
diploma/GED, 16% receiving some college with no degree, 11% with a Mas-
ter’s degree, and, at the smallest end of the spectrum 2% reporting a Doctor-
ate. 39% of contributors claim to be males between the ages of 24-34, and
overall, 72% report male and 26% report female as their gender. While 4% of
the workforce reported being younger than 18 at the time of CrowdFlower’s
survey, 50% reported being younger than 30, and 3% reported being older
than 64. 46% report a household income less than $10,000, and 3% report
a household income greater than $150,000. 50% of workers report working
online because “it is a great way to spend free time and get some cash.”

In the month we interviewed CrowdFlower, their daily active crowd
workers ranged from 6,500 to 17,000. Until that point, CrowdFlower had
seen 5 million contributors log in and participate in the platform in some way
or another. Contributors are organized into levels, with a large pool of level

"'We determined this by logging into CrowdFlower and looking at a configurable “Channel
Table” in a task’s configuration
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1 crowd workers for requesters that need tasks completed quickly. As crowd
workers prove themselves on the platform, they can be promoted into trusted
levels 2 and 3, which provide more lucrative or interesting tasks, and Crowd-
Flower reports around 10,000 active contributors are available at this level.

Until the point when we interviewed them, CrowdFlower had
seen 5 million contributors log in and participate in the platform.

9.2.2 Upwork

Upworl<E|is a marketplace where requesters looking for subject matter experts
can hire crowd workers as “freelancers,” and have them work on a “contract.”
This model is more similar to the “freelancing” firms of the early 2000’s
rather than the Mechanical Turk and CrowdFlower-like microtasking mar-
ketplaces of the late 2000s. Elance and oDesk merged to form Upwork, and
Elance was established in 1999 while oDesk was established in 2003. In this
model, a team can supplement their existing skillset with a freelancer, or a
project manager can source experts in many fields, leaving Upwork to handle
payments, time tracking, and identifying good leads.

At the end of 2014, Upwork report [[17] a combined freelancer base of
greater than 8,000,000 in more than 180 countries, with “$750M worth of
work done in 2013.” While the oDesk website lists a little more than 80 cate-
gories of freelancers available, the most promoted categories on its front page
are web design (34,711 freelancers), copy editing (21,132), web development
(62,984), search engine optimization (20,947), mobile application develop-
ment (21,088), data entry (76,216), virtual personal assistance (27,119), and
software development (56,849). Based on these categories, it is easy to see
that this freelancer or worker pool is focused more on the “higher end” tasks
that require significant expertise. In searching for a freelancer, a requester can
see their desired hourly wage, their hours worked on the platform, a portfolio
of previous projects, and reviews from previous contracts.

’Elance and oDesk merged in late 2013 and eventually rebranded to Upwork, and while
we interviewed oDesk employees, the two marketplaces are very similar in nature. When
reporting aggregate statistics, we include counts from both markets when possible.
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Through the survey, Upwork reported that their workforce was between
the ages of 18 and 50, but did not provide more granularity. The educa-
tional achievements of the freelancers was described as “College grads and
above.” The top 10 freelancer countries reported are India, Philippines, USA,
Ukraine, Pakistan, Russia, Bangladesh, China, Canada, UK.

9.2.3 MobileWorks

MobileWorks was a startup that focusecﬂ on providing requesters with solu-
tions to problems that are larger than microtasks. While requesters still had
programmatic access to MobileWorks, they could request higher-level tasks
than microtasks (e.g.,“create a presentation based on this outline”), and im-
plemented a review-based hierarchy where trusted managers vetted crowd
worker contributions. Part of the mission of the company is to provide fair
wages to workers in both the developed and developing world, and this is
reflected in both the company branding, charges, and high-level tasks they
describe.

While the company did not provide detailed statistics, its crowd work-
force’s age ranged between 18 and 60. 50% of the crowd claims to be female,
whereas 47% responded male. All of the MobileWorks crowd workers have
a college degree or are in the process of completing one. The primary coun-
tries in which the company has crowd workers are the US, India, Philippines,
Kenya, Serbia, and Jamaica. Many workers report using the MobileWorks
platform as their primary job, but the company does not have precise num-
bers on this.

9.2.4 Samasource

Samasource is a non-profit social enterprise with a vision “to connect the one
billion people living in poverty around the world to work using the power of
technology” [13]. To work toward this vision, it connects corporate customers
in need of microtask labor with agencies in the developing world that source
crowd workers. Agencies provide resources such as training, a location to do
work, and computers on which to do the work. Some training and feedback

3in 2014, the company became LeadGenius, which provides lead generation services with
the help of the crowd.
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is supported by Samasource’s employees and systems, but the primary role
of ensuring that workers complete tasks well is in the hands of trainers and
managers at individual agencies.

As part of Samasource’s mission involves pairing marginalized popu-
lations of women and young individuals that are unemployed or underem-
ployed, most of the Samasource workers are between the ages of 18 and 30,
with a few between the ages of 30 and 40. Samasource has partner agencies
supervising crowdsourcing in Haiti, Ghana, Uganda, Kenya, and India, with
the largest concentrations in India, Kenya, and Uganda. These agencies offer
affiliate delivery centers, which are physical locations that workers go to that
offer all of the required facilities (e.g., managers, trainers, computers, stable
electricity) to do crowd work. The gender distribution varies by geography:
in India, Samasource works with a close partner that only works with women,
whereas in Africa Samasource works with relief centers that also source many
men.

As per Samasource’s standards, crowd workers must be English speakers,
but other criteria aim to assure that the workers are in some way “in need.”
A lot of the workers have never had a job before and do not have a college
degree, and while training programs vary by geography, a training period of
approximately 2 weeks includes technology and workplace etiquette training.
While we don’t have statistics on this, Samasource assumes most workers
focus on tasks it provides as their primary employment.

A recent impact report [[12] explains that Samasource has interacted with
6277 workers by late 2014, and with 878 active workers in the second quarter
of 2014. Samasource builds worker churn into its goals: with 92% of workers
reported to be underemployed or unemployed before working with Sama-
source, 89% pursue additional employment or education after Samasource.
As a result, one can not compare the active or aggregate number of workers
interacting with Samasource to the other marketplace providers.

9.3 Implementations
As the providers each serve different missions, the implementation details

of each marketplace are quite different. We now compare and contrast each
marketplace’s design decisions and discuss the implications for requesters
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Marketplace Task Complexity ~ Notes

CrowdFlower Microtasks Requesters submit tasks programmatically or via spreadsheet
upload, with the platform sending microtasks to multiple
workers

Upwork Macrotasks Requesters manage relationships and contract creation for
themselves

MobileWorks Macrotasks The platform accepts a wide variety of tasks described at a

high level that managers vet and ensure quality on

Samasource Microtasks Requesters submit tasks programmatically or via spreadsheet
upload, with Samasource employees helping manage and de-
sign the process

Table 9.3: The degree of complexity (microtask vs macrotask) of tasks on each platform.

building workflows on each platform.

We describe the complexity of tasks in Section [9.3.1] task creation in
Section [9.3.2] matching workers to tasks in Section [9.3.3| and dealing with
mismatches between numbers of workers and tasks in Section[9.3.4

9.3.1 Task Complexity

The four platforms we spoke with have different approaches to the size of a
task a crowd worker must complete, which we describe in Table Crowd-
Flower and Samasource provide workers with microtasks, or well-defined
simple questions (e.g., yes/no, categorization, simple free-response). This
form of task is often useful for training classifiers and many other standard
data processing operations that we described in Chapter [3] Upwork and Mo-
bileWorks, on the other hand, focus on macrotask labor. In Upwork’s case, re-
questers bring freelancers on to perform high-level tasks like designing web-
sites or writing free-form text, that do not fit the simple well-defined small
question template. MobileWorks, while still providing programmatic access
to create tasks, also considers all tasks to be macrotasks: requesters are given
relative freedom to describe a high-level task, and MobileWorks has systems
in place to ensure the quality of the eventual output.

9.3.2 Self-serve vs. Managed Task Creation

We asked the platform providers a series of questions to understand how re-
questers could access their platforms. We summarize the results in in Ta-
ble 0.4] Specifically, we wanted to know what sort of programmatic access
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Marketplace Service Type Notes

CrowdFlower  Self-serve w/ managed quality ~ CrowdFlower reports that all users start with the platform’s
user interface to generate their tasks and test their workflows,
but then about half utilize the API to generate tasks once they
have ironed out the details.

Upwork Self-serve Because tasks and contracts are built around higher-level
macrotasks, requesters on Upwork are not offered specific au-
thoring or task management tools.

MobileWorks Hybrid Requesters are provided with programmatic access to the
platform. End-to-end management of task design was made
easier through the explicit role of managers on MobileWorks,
who could help with both vetting crowd workers, and creating
and experimenting with new workflows for completing work.

Samasource Managed Most frequently, requesters rely on Samasource to manage
the end-to-end process, including task and interface design,
as well as crowd worker training and vetting.

Table 9.4: The degree to which the crowd workflow design and development process is self-
serve or managed on each platform.

they allowed requesters to generate new tasks and compensate workers, and
what methods requesters used to manage their workflows.

CrowdFlower provides a user interface in which requesters can design
their tasks in a markup/template language that makes it simple to embed task-
specific information in web forms that codify the questions a crowd worker
must answer. It then allows them to upload spreadsheets with data they wish
to have processed (e.g., images to be classified) as well as an API to create
these tasks. CrowdFlower reports that all users start with the platform’s user
interface to generate their tasks and test their workflows, but then about half
utilize the API to generate tasks once they have ironed out the details.

Samasource does not provide a user interface for task design, but allows
requesters to either upload spreadsheets or create new tasks programmati-
cally. Most frequently, requesters rely on them to manage the end-to-end pro-
cess, including task and interface design, as well as crowd worker training
and vetting. This is most similar to traditional business process outsourcing,
in which the outsourcing firm performs project management and design work
on behalf of the client.

MobileWorks, while providing more self-serve functionality for creat-
ing and managing tasks than Samasource, ultimately found that most re-
questers opted for end-to-end management of task design. This was made
easier through the explicit role of managers in the platform, who could help
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with both vetting crowd workers, and creating and experimenting with new
workflows for completing work.

Upwork offers the richest APIs of the four platforms for updating con-
tracts, extracting worker statistics, and managing payments. Because tasks
and contracts are built around higher-level macrotasks, requesters are not
offered specific authoring or task management tools. However, enterprise
clients are offered an in-the-works TaskManager tool that facilitates task de-
sign, management, and reporting.

9.3.3 Matching Workers to Tasks

Given the vast work available on each marketplace, it is interesting to ask how
workers are matched to work. On CrowdFlower, MobileWorks, and Sama-
source, workers decide which tasks to work on. Thus, these marketplaces are
“worker-centric” in that (assuming they meet the qualifications), the worker
ultimately decides which tasks they would like to work on. This is also true
of Mechanical Turk, for example. These platforms offer requesters some fil-
tering ability, like filtering on worker qualifications (e.g., whether a worker
has experience in labeling images). CrowdFlower and Samasource offer more
generic filters, such as filtering on worker’s prior quality ratings or their coun-
try of origin. Samasource also allows requesters to create whitelists of work-
ers with which they have had good experiences, and blacklists of workers to
avoid working with in the future.

On CrowdFlower, MobileWorks and Samasource, workers ulti-
mately decide which tasks to work on... on Upwork, requesters
ultimately decide which workers to hire.

Upwork, because of the more contractual nature of the work, acts as a
matchmaker at the contract level. Requesters, whose profiles and ratings are
available, can post tasks and receive offers from freelancers whose profiles,
previously completed contracts, and ratings are available. It is ultimately
up to requesters which freelancers to start contracts with. Thus, Upwork is
“requester-centric” in that requesters make the ultimate decision (even though
workers can indicate their eagerness to work on tasks).



122 Survey of Marketplace Providers of Crowdsourcing

While the matchmaking process differs by platform, all platforms indi-
cated a desire for better algorithmic matching tools, whether they improve
search results or make recommendations for requesters and workers alike.
This matching problem may prove to be fruitful ground for future research.

9.3.4 Work-Worker Mismatches

CrowdFlower explained that in their largest pool of less vetted
workers, there are always more workers available than tasks to
complete. In their more curated pools of workers that had proven
themselves on the platform, the amount of work was greater than
the available crowd worker supply.

Marketplaces have a unique view of both the demand and the supply of
labor. In some cases, they can segment this information further by specific
types of tasks to identify holes in either supply or demand for varied areas of
expertise. We asked participants about their understanding of this mismatch.
MobileWorks and Samasource explained that it was almost always the case
that the number of workers available to complete tasks was larger than the
amount of work available, leaving workers waiting for tasks. CrowdFlower
provided a nuanced version of this story: in their largest pool of less vetted
workers, there are always more workers available than tasks to complete.
In their more curated pools of workers that had proven themselves on the
platform, the amount of work was greater than the available crowd worker
supply. This could indicate many things, such as:

o There is a higher need for skilled work (and therefore skilled workers)
in crowdsourcing platforms.

e The skilled workers are not as present in crowdsourcing because they
prefer traditional work, or quickly transition out of crowdsourcing be-
fore they reach the skilled worker levels (this could mean that there is
significant churn in the worker pool).

e Part-time crowd workers are happy staying in the less skilled levels
(due to the simplicity of the tasks in that level), even though they could
transition to the skilled levels.
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Marketplace Task Redundancy Signals of Quality

CrowdFlower  2-8 workers/task CrowdFlower’s focus on redundant responses to microtasks
allows them to rely on traditional gold standard and algorith-
mic mechanisms for simultaneously determining both work
and worker quality. Requesters pick between different meth-
ods of redundantly asking questions (e.g., simple N-way re-
dundnacy, or stop when algorithm is confident)

Upwork None Combines information such as education/background/demo-
graphics, public and private feedback at the end of a contract,
and performance on task-specific qualification tests to deter-
mine freelancer quality

MobileWorks Spotchecks:  Digi- ~ MobileWorks relies heavily on the strength of a manger’s re-
tally paired workers  view, and aggregates these reviews to create a global notion

& managers of worker quality

Samasource Spotchecks:  Col-  Since workers and managers are physically collocated, tradi-
located workers &  tional face-to-face training and feedback mechanisms suffice
managers for their quality thresholds

Table 9.5: The degree of redundancy of tasks, and the general approach to determining work
and worker quality on each platform.

Further investigation is needed to reveal which of these reasons, or others,
could be responsible for this mismatch.

Furthermore, requesters tended to create tasks at particular times of day
and days of week, which CrowdFlower signals to crowd workers so they can
plan for ideal times to complete tasks. Finally, CrowdFlower notes that the
supply/demand mismatch varies by task type, indicating that even amongst
microtasks, some types of labor are more valued than others.

9.4 Quality Control

The quality control mechanisms of each platform relate to and depend on the
types of tasks the workers are doing on that platform. In traditional microtask-
based labor, the inputs and outputs to various tasks are well-defined enough
that one can reconcile multiple workers’ responses after redundantly assign-
ing multiple workers to each task. As the complexity of tasks increases, plat-
forms opt for more traditional spot-checked reviews to ensure training and
quality. We summarize the various platforms’ approaches in Table We
describe, in turn, task redundancy in Section [9.4.1] signals for inferring task
quality in Section[9.4.2] and providing feedback in Section[9.4.3]
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9.4.1 Task Redundancy

CrowdFlower, whose focus is on well-defined inputs and outputs to micro-
tasks, achieves task quality by offering tasks redundantly to workers. By de-
fault, the system asks three workers to complete each microtask and infers
the most likely answer based on the majority response and workers’ previous
track records of responding correctly. It also provides more complex redun-
dancy measures, such as varying the redundancy of each task from 2-8 crowd
workers, stopping when it reaches 95% confidence in a response based on the
level of agreement of responses. Samasource, while it also offers microtask
labor, avoids redundancy-based schemes, leaving quality control to tools like
spotchecks of worker responses and continuous training by affiliate delivery
centers.

The macrotask-oriented providers also avoid redundancy. On Upwork,
the tasks are high-level enough that there would be no easy way to reconcile
redundant responses, and quality control is left to requester/freelancer ratings
and feedback at the end of a contract. To support less rigid task definitions,
MobileWorks pairs crowd workers with managers who review worker output,
vet responses, and offer additional training or instruction based on worker
accomplishments.

9.4.2 Signals of Worker Quality

We asked the platforms which mechanisms and signals they utilized to infer
the overall quality of a worker’s output. The responses varied widely.

Samasource takes an organic approach, leaving the task to managers in
delivery centers: since workers and managers are physically collocated, tradi-
tional face-to-face training and feedback mechanisms suffice for their quality
thresholds. Upwork utilize information such as education/background/demo-
graphics, public and private feedback at the end of a contract, and perfor-
mance on task-specific qualification tests to determine freelancer quality and
appropriately recommend them for future work.

While CrowdFlower and MobileWorks take different approaches, they
collect and rely on the largest amount of features to characterize crowd
worker quality. CrowdFlower’s focus on redundant responses to microtasks
allows them to rely on traditional gold standard and algorithmic mechanisms



9.4. Quality Control 125

for simultaneously determining both work and worker quality. MobileWorks
relies more heavily on the strength of a manger’s review than on redundantly
assigning tasks, and aggregates these reviews to create a global notion of
worker quality. Both systems also rely on worker engagement on the plat-
form, including factors such relative task completion time of different work-
ers, the number of tasks crowd workers recently completed, and workers’
overall tenure in the system. Because of its scale, CrowdFlower also look for
workers with shared IPs to identify collusion.

One last signal that both CrowdFlower and Samasource identifies is “gold
standard” tasks. This approach, generally targeted at microtasks, requires re-
questers to provide some example microtask along with their answers, which
the platforms then integrate into a worker’s workflow. If workers consistently
provide an incorrect response to these gold standard tasks, the platform can
determine that either the worker needs further training, the worker is acting
maliciously, or, commonly, the task is underspecified or confusing.

Generally, all of the respondents that utilized signals avoided complex
inference techniques for determining overall worker quality. They rely more
heavily on a set of simple summary statistics instead of complex approaches.
CrowdFlower in particular explained that they are concerned with increas-
ingly complex models, as these models might offer up more challenging-
to-understand adversarial models, and are also more difficult to explain to
workers.

9.4.3 Providing Workers with Feedback

In addition to ensuring the quality of a worker’s work output and matching
the worker with appropriate work in the future, the other benefit of quality
assurance is that it can serve as a mechanism for offering workers feedback
on their progress and on which areas of expertise they need to strengthen.
While all of the participants provide some form of feedback, the format dif-
fers. MobileWorks and CrowdFlower offer workers some aggregate measures
of their performance, but also provide feedback on every single task, letting
crowd workers know when they made particular mistakes. On MobileWorks,
such feedback comes in the form of a manager’s review and rating of a task,
whereas on CrowdFlower, it comes from a contributor’s agreement with other
workers that answered a particular question. Samasource offers feedback,
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generally by way of a manager in a delivery center. Feedback comes to free-
lancers on Upwork in the form of free-form and ratings in public and private
forms after a contract has ended.

One area that respondents highlighted as challenging is transparency. In
cases where a crowd worker can be promoted or qualified to do more chal-
lenging or interesting work, how should the platform let them know that they
are on track? What is the best way to explain how a worker should focus to
reach the next level? These questions become more challenging as the plat-
forms scale and such feedback is provided in some automated form.
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Conclusion

Crowdsourced data processing has made its way into most large technology
companies, and has powered the innovations behind several successful star-
tups. At the same time, over the past few years, there has been a lot of ex-
citement in the academic community (including the development of a new
conference) on identifying creative and efficient uses of crowd work, and on
fully leveraging the potential benefits of crowdsourced data processing.

Unfortunately, the industrial and academic pursuits of crowd-powered
data processing systems have largely grown in parallel, preventing academics
from getting inspiration from applications, and industry users from adopting
the finest academic contributions. With this book, we have sought to bridge
the two communities, both by summarizing the state of the art in academia,
and by speaking with industrial users and marketplace providers of crowd
work, to identify their approaches, philosophies, and concerns.

Several academic communities have contributed to the early days
of crowdsourcing research, including the databases, economics, human-
computer interaction, machine learning/artificial intelligence, psychology,
and theory communities. The communities provided several inspirational ex-
amples for future applications of crowd work and human computation. Ad-
ditionally, the communities established some fundamental building blocks
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of crowdsourced workflows, including systems for building the workflows,
algorithms for ensuring quality worker output, techniques to motivate good
work, novel interfaces for completing crowd work, demographic studies of
the crowd, and, importantly, an exploration of the ethics of crowd work.

Through our surveys of industry users and marketplace providers of
crowd work, we have found that not only do technology companies make
heavy use of crowd work for data processing, but that they have also invested
several tens of full-time engineers and designers and millions of dollars into
these workflows. Industry users of crowd work appear to be benefiting from
the work in diverse application areas, and are looking to expand the parts of
their businesses that crowd work can power. While crowdsourced data pro-
cessing has found a home in industry, it is still very much in its infancy. The
workflows our industry participants described are relatively simple, and most
of the inference algorithms industry users have applied to ensure high quality
work are simple compared to contributions from the academic community.

In the other direction, industry has also explored aspects of the design
space left virtually untouched by the academic community. Most notably,
we find that crowd worker tenures on projects are often measured in years
and that a common approach to ensuring quality is establishing longer-term
relationships with workers. The community could benefit from more studies
in crowd worker tenure and longevity.

We view these gaps between industry and academia as opportunities. In-
dustrial applications of crowd work have a long way to grow, and many novel
applications and efficiencies that the academic community has contributed are
yet unexplored. Academic researchers can see more adoption of their novel
algorithms and approaches by releasing more of their contributions as usable
software artifacts that industry can integrate. Future academic contributions
can come from observing how industrial users apply crowd work.

As crowd work becomes more prevalent, one final area of research is
arguably most important to its longevity: the development of sustainable, just,
and ethical labor models through which it can grow. This is one area that we
see academics, practitioners, and policymakers coming together to build a
better future for crowd work and crowd workers. While the issue is currently
on the fringes of most discussions about crowdsourcing, it must increasingly
be front and center if crowdsourcing is to succeed in the long run.
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Crowdsourced data management has arrived, and is being adopted widely
in many novel application areas. In the decades to come, we hope to see more
exciting work and collaborations in the space between academia and industry.
With a solid foundation established by both communities, we are excited to
see where the future takes us.
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A

Industry Users Survey

Part 1 of 6: Crowd Use Cases
Which of the following use cases of crowds apply to the tasks your team is

]
]
]
]
]
]
]
]
]

solving? (place an X inside the [ ] for all options that apply):
classification
entity resolution/matching
schema mapping
spam detection
content moderation
text generation
data cleaning/normalization
data extraction
other(s):

For any of the use cases you’ve checked off above, please provide a one- or

two-line description of your use case

What other use cases of crowdsourcing do you know about within your company

beyond your team?

How did you solve these problems before crowdsourcing?

In your words, what are the benefits of crowdsourcing? How do you sell it

within your organization?
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Part 2 of 6: Crowd Management

How many people on your team / company work on crowdsourcing?

Do you use explicit crowd work (e.g., paid workers, volunteer workers), or
implicit crowd work (e.g., email spam tagging by users or search keywords
entered by users) or both?

If you use explicit crowd work, please answer the following questions:

A. How do you recruit crowd workers -- which platforms, if any? Do you have in
-house crowd workers or do you use external crowds? In either case, explain
why?

B. How many tasks per week do your crowd workers complete? How many crowd
workers do you work with, in a week? What is the median/max length of a
relationship you’ve had with a crowd worker?

C. If you use explicit, paid crowd work, roughly how much money do you
spend per week on compensating crowd workers?

Part 3 of 6: Quality of Work and Workers

How do you evaluate worker quality? (place an X inside the [ ] for all options
that apply)

[ ] gold standard tasks interspersed between real tasks

[ ] performance on quizzes/tests/ qualification tasks before real tasks are
asked

[ ] disagreement measures (e.g., how often does a worker disagree with the
majority)

[ ] expectation-maximization-style procedures where you determine worker
quality and work quality simultaneously
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task completion speed

reviews/ verification , where another worker or expert determines the
correctness of the work output

external measures, such as education, background

other(s):

How often do you calculate worker quality? (place an X inside the [ ] for all
options that apply)

[ ] every task they answer

[ ] periodically, say after a week, or after completing X tasks

[ ] never, once we evaluate them up-front

[ 1 other(s):

Given your evaluations of workers, how do you evaluate the overall quality of
a task? (place an X inside the [ ] for all options that apply)

[ ] expectation-maximization-style procedures where you determine worker
quality and work quality simultaneously

[ ] given worker qualities learned upfront, use techniques like maximum-
likelihood to infer the highest probability answer per task

[ ] simple aggregation measures that ignore worker quality, e.g., majority
vote

[ ] reviews/ verification , where another worker or expert determines the
correctness of the work output

[ ] other(s):

Would/do you benefit from optimization algorithms to reduce the cost or
improve accuracy of answers? If yes, which algorithms do you employ; if
no, why not?

Do you provide feedback to workers (on how well they are doing) per-task or
overall? If so, how?

Part 4 of 6: Incentives/Payment Mechanisms

What incentive mechanisms do you use? (place an X inside the [ ] for all
options that apply)

[ ] hourly payment

[ ] per-task payment

[ 1 bonuses

[ ] gamification
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leaderboards

promotion to a higher position

other(s):

For any of the mechanisms you’ve checked off above, please provide a one- or
two-line description of your mechanism.

Do you have different classes of crowd workers? What are the classes? Are
they hierarchical (e.g., managers vs. employees), or are they based on
different skill -sets (e.g., workers good at classification vs. workers
good at writing textual passages)?

Are your incentive mechanisms different for different crowd workers? How
much transparency do workers have into your payment/promotion schemes?
How many roles has a crowd worker served in with you?

Part 5 of 6: Task Design/Decomposition Questions

How are crowds integrated into your internal workflows? (place an X inside the
[ ] for all options that apply):

[ ] train: crowds provide training data for classifiers , that then process all
subsequent tasks

[ ] uncertain: when an algorithm is uncertain about a response, it asks the
crowd

[ ] active: algorithms determine where to get training data from crowds (using

active learning)
stand-alone: crowds answer all questions
test: crowds are used to verify or evaluate the output of possibly

competing algorithms

[ ] other(s):

For any of the integrations you’'ve checked off above, please provide a one- or
two-line description of your integration, and how often it is used.

What frameworks (e.g., TurKit, Clockwork Raven), APIs (e.g., MTurk API), or
libraries (e.g., Get-Another-Label) do you use in building your crowd
workflows?

How much iteration or A/B testing goes into your task design?
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Do you use primarily microtasks or macrotasks?

What fraction of your crowdsourced workflows have more than one
crowdsourcing step involved? You can answer as a fraction (e.g., 3 of the 7
workflows we’ve built involve a human in more than one step), or with a
more qualitative measure (e.g., None, Some, Most, All).

Have you ever employed workflows of the following form? (place an X inside the
[ ] for all options that apply):

iterative refinement (Turkit-style)

find - fix - verify (Soylent- style)

do-verify (hierarchies of more trusted workers vetting other workers)

other(s):

If you checked ‘“‘other’” above, please explain

[]
[]
[]
[]

Do your team/company have some form of collaboration or interaction between
workers working on tasks? If so, please explain:

Part 6 of 6: Challenges

On a scale from 1 (not challenging at all) to 7 (extremely challenging), how
do you rate each of the following challenges?

recruiting

crowd training and initial vetting

gold standard task creation

task decomposition and designing workflows

user interface design

incentive design

payment mechanisms

gamification

identifying correct responses

identifying high/low quality workers

providing workers with feedback on their prior work
integrating crowds with other algorithms

eliminating cognitive bias in worker responses

addressing differences in cultural knowledge amongst workers
other: please explain
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How long did this survey take you?

Thank you so much for your time and insights!!



B

Marketplace Providers Survey

Part 1 of 5: Crowd characteristics

For all of these questions, provide as precise an answer as you can, but if
you only have rough descriptions, that’s fine as well.

What is the approximate age distribution of your crowd? (Please write a rough
percentage within the [ ] for each type that you see in your marketplace;
if you don’t know the exact numbers, place an X inside the [ ] for all

options that apply)

0-18

18-30

30-40

40-50

50-60

60+

What is the approximate gender distribution of your crowd?
What is the approximate educational achievement distribution of your crowd?

What is the approximate per-country distribution or geographical distribution
of your crowd?

What fraction of your crowd uses your platform as their primary job?
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Across all crowd marketplaces, how many daily/weekly/monthly active workers
are there? If you have a source for this estimate, it would be helpful for
us.

Part 2 of 5: Implementations

What fraction of the tasks in your marketplace are microtasks (i.e., a small
number of simple questions, typically a few minutes) versus macrotasks (i.
e., involved work/answers, up to a few hours). A rough estimate is OK (
write a rough percentage within the [ ] for each type that you see in your
marketplace; if you don’t know the exact numbers, place an X inside the [
] for all options that apply):

Almost all microtasks

Mostly microtasks

Roughly even

Mostly macrotasks

Almost all macrotasks

If your company primarily deals with either microtasks or macrotasks, is there
a particular reason or set of reasons why your company is focusing on
that market? Please explain.

Please provide some insights into what fraction of the microtasks fall under
the following types (write a rough percentage within the [ ] for each type
that you see in your marketplace; if you don’t know the exact numbers,
place an X inside the [ ] for all options that apply):

[ 1 classification

entity resolution/matching

schema mapping

spam detection

content moderation

text generation

data cleaning/normalization

data extraction

translation, transcription

other(s):

What is the distribution of # assignments/redundancy set by the requester of
each task?

Do you provide an API or other programmatic access to the following
information? (place an X inside the [ ] for all options that apply)

[ ] retrieving worker information/ statistics

[ ] for worker payment

[ ] for posting tasks and retrieving responses
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How do requesters use your platform? For each of the following, write a
number inside the [ ] between 1 (not at all) and 7 to (very often) for
how often requesters use the following modalities:

[ ] using a user interface you provide to requesters (if any)

[ ] using an API you provide with their own custom interfaces (if any)

[ ] having you completely handle the management of tasks and workers

How do you match workers to tasks? (place an X inside the [ ] for all options
that apply)
[ ] requesters decide which workers to hire
[ 1 workers decide which tasks to work on; if so, do you further use the
following constraints to limit which tasks workers can work on? (place an
X inside the [ ] for all options that apply)
[ 1 generic qualifications (e.g., worker rating, country of origin)
[ ] task- specific qualifications (e.g., workers must have image
tagging mastery)
[ 1 blacklist (i.e., requesters bar some workers from working on
tasks, possibly
because they did poorly in the past)
[ 1 whitelist (e.g., requesters invite a set of trusted workers from previous
tasks to
the current one)
[ ] other: please explain
[ ] automatically match workers to tasks; if so, do you use the following
signals to infer the best matching? (place an X inside the [ ] for all
options that apply)
[ ] requester specifications of generic worker and task properties (e.
g
qualifications , constraints, task type)
[ ] automatically inferred task type (e.g., automatically identifying that a
task is an an image tagging task)
[ ] automatically inferred task type- specific worker abilities (e.g.,
abilities inferred from the past performance of workers on image tagging
tasks and/or the educational background of workers)
[ ] worker-reported task type- specific abilities (e.g., ‘I am great at image
tagging I’*)
[ ] other: please explain
[ ] other: please explain

Do you see a benefit for a programming toolkit or workflow management tool
that would allow your requesters to easily create common workflows and
reason about worker responses? Why or why not?

Does such a tool already exist, and if not, what limitations do you see in
current workflow management tools?
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Part 3 of 5: Statistics

For all of these questions, provide as precise an answer as you can, but if
you only have rough descriptions, that’s fine as well.

What is the distribution of # unique request types (e.g., ‘‘label image 1”
and ‘‘label image 2’’ are a single request type) per requester?

What is the distribution of # total tasks (e.g., ‘‘label image 1’ and ‘‘ label
image 2 are two tasks) per requester?

What is the distribution of # workers per requester?
What is the distribution of spending per requester?

Do you ever observe an imbalance between the number of workers and number
of tasks at any point?

[ ] Yes

If yes, do you see: (place an X inside the [ ] for all options that
apply)
[ ] The number of available workers being greater than the number of available
tasks, and hence workers have to wait

[ 1 The number of tasks being greater than the number of available workers,
and hence tasks take a very long time to complete

[ ] No

If you observe an imbalance, what does the imbalance depend on? (place an X
inside the [ ] for all options that apply)

[ ] time of day, month or year

[ ] pricing level (e.g., for some task prices, there is an imbalance between
number of workers and tasks)

[ ] task type (e.g., for image tagging tasks, there is an imbalance between
the number of workers and tasks)

Part 4 of 5: Quality assurance

If you infer trustworthiness of workers, what mechanisms do you use to infer
trustworthiness scores? (place an X inside the [ ] for all options that
apply)

[ ] education, background, demographics
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[ ] level of engagement on the platform:
[ ] time spent on average
[ ] tasks completed
[ ] time since registering for the service
[ ] acceptance scores from requesters
[ ] task completion speed
[ ] accuracy, computed using the following measures:
[ ] gold-standard tasks interspersed between real tasks
[ ] performance on quizzes/tests/ qualification tasks before real tasks
are asked
[ ] disagreement measures (e.g., how often does a worker disagree with
the majority)
[ ] expectation maximization style procedures to simultaneously
determine worker quality
and work quality simultaneously
[ ] reviews/ verification , where another worker or expert determines
the correctness of the
work

If you don’t use complex schemes for inferring accuracy or trust, given the
research on quality assurance schemes, is there a reason why you chose to
not use them? Please explain.

Given your trustworthiness scores of workers, how do you evaluate the overall

quality of a task? (place an X inside the [ ] for all options that apply)
[ ] expectation-maximization-style procedures where you determine worker

quality and work quality simultaneously

[ ] given worker qualities learned upfront, use techniques like maximum-
likelihood to infer the highest probability answer per task

[ ] simple aggregation measures that ignore worker quality, e.g., majority
vote

[ ] reviews/ verification , where another worker or expert determines the
correctness of the work output

[ ] other(s): please explain

Do you provide feedback to workers (positive and/or negative feedback) per-
task or overall? If so, how?

Part 5 of 5: Challenges

What do you view as requesters’ challenges? On a scale from 1 (not challenging
at all) to 7 (extremely challenging), how do you rate each of the
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following challenges?

recruiting

crowd training and initial vetting

gold standard task creation

task decomposition and designing workflows

user interface design

incentive design

payment mechanisms

gamification

identifying correct responses

identifying high/low quality workers

providing workers with feedback on their prior work
integrating crowds with other algorithms
eliminating cognitive bias in worker responses
addressing differences in cultural knowledge amongst workers

other: please explain

Where do you see yours and other marketplaces evolving to in the future? On a
scale from 1 (not likely at all) to 7 (highly likely ), how do you rate the
following scenarios?

[ ] increasing levels of associations of ‘‘ identities

them more responsible for their work

moving towards macro instead of micro tasks

moving towards more complex tasks (programming, virtual assistance)

rather than simple ones (labeling, etc.)

[ ] increasing levels of skillsets associated with workers, possibly with
qualification tests or hierarchies of workers (‘‘ managers’ vs.

”

with workers, making

employees’’)
[ ] other: please give a two line description

Is there anything else you would like to add?
Approximately how long did this survey take you to complete?

Approximately what percentage of the survey did you need assistance from one
or more colleagues in order to complete?

Thank you so much for your time and insights!!!!
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