
Critter: Augmenting Creative Work with Dynamic
Checklists, AutomatedQuality Assurance, and

Contextual Reviewer Feedback
Aditya Bharadwaj

Virginia Tech
Blacksburg, VA, USA

adb@vt.edu

Pao Siangliulue
B12

New York, NY, USA
pao@b12.io

Adam Marcus
B12

New York, NY, USA
marcua@marcua.net

Kurt Luther
Virginia Tech

Arlington, VA, USA
kluther@vt.edu

ABSTRACT
Checklists and guidelines have played an increasingly im-
portant role in complex tasks ranging from the cockpit to
the operating theater. Their role in creative tasks like de-
sign is less explored. In a needfinding study with expert web
designers, we identified designers’ challenges in adhering
to a checklist of design guidelines. We built Critter, which
addressed these challenges with three components: Dynamic
Checklists that progressively disclose guideline complexity
with a self-pruning hierarchical view, AutoQA to automate
common quality assurance checks, and guideline-specific
feedback provided by a reviewer to highlight mistakes as
they appear. In an observational study, we found that the
more engaged a designer waswith Critter, the fewermistakes
they made in following design guidelines. Designers rated
the AutoQA and contextual feedback experience highly, and
provided feedback on the tradeoffs of the hierarchical Dy-
namic Checklists. We additionally found that a majority of
designers rated the AutoQA experience as excellent and felt
that it increased the quality of their work. Finally, we discuss
broader implications for supporting complex creative tasks.

CCS CONCEPTS
• Human-centered computing → Interactive systems
and tools;

KEYWORDS
Quality assurance; checklists; creative work; feedback

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300769

ACM Reference Format:
Aditya Bharadwaj, Pao Siangliulue, Adam Marcus, and Kurt Luther.
2019. Critter: Augmenting Creative Work with Dynamic Checklists,
Automated Quality Assurance, and Contextual Reviewer Feedback.
In CHI Conference on Human Factors in Computing Systems Proceed-
ings (CHI 2019), May 4–9, 2019, Glasgow, Scotland Uk. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3290605.3300769

1 INTRODUCTION
Navigating constraints in complex creative tasks is challeng-
ing. Creative professionals in various domains such as web
design, software development, and music composition have
to balance their creative expressionwith practical constraints
and quality considerations. On one hand, they are expected
to create novel work. On the other hand, they need to ensure
the quality of work that they produce. While we often pay
more attention to the novelty of creative work, the quality
and the repeatability of creative products is no less important.
To ensure quality in creative work, fields such as design

and software engineering gravitate toward best practices
such as design guidelines [21, 24] or coding style guides
[44]. For example, web designers have to balance deliver-
ing websites that are aesthetically compliant with customers’
requests while also following best practices around accessibil-
ity and responsivity. Design guidelines, while offering stan-
dards that should improve quality, pose their own challenges
[30, 43]. Multi-page guidelines have multiple inherent usabil-
ity drawbacks in areas like searchability, conflicts, and obso-
lescence. To our knowledge, there has been little exploration
of how to effectively incorporate design guidelines into the
design process without disrupting designer creativity [24].
Checklists are effective in adding structure and repeata-

bility to complex processes, facilitating the enforcement of
guidelines on a per-project basis [17]. Even in areas that
require expertise like aviation and surgery, experts rely on
checklists to ensure a standard of quality: pilots’ every step
in the cockpit is guided by a checklist [7, 20], and surgeons
increasingly look to checklists to improve outcomes [4, 19].
While fields that require precision like automobile engineer-
ing [48] or construction are natural candidates for checklists

https://doi.org/10.1145/3290605.3300769
https://doi.org/10.1145/3290605.3300769

[17], there is also room for checklists in creative and semi-
structured pursuits such as design or software engineering.
Still, performing these creative tasks is not as simple as fol-
lowing protocol. The creative process is complex, dynamic,
and non-linear [35, 41]. For example, successful designers
can have drastically different workflows, and designers vary
their approach on projects of different complexity or scope.
Finally, some aspects of design are iterative, making the ap-
plication of step-by-step checklists more challenging.
We investigate the iterative and real-world deployment

of checklists for enforcing design guidelines with a team of
expert web designers. In a needfinding study, we identify
the root cause for the poor adherence to checklists and an
effectively lower-quality work product: our initial checklist
implementation lacked the dynamicity necessary for diverse
design projects. While review and manual quality assurance
helped improve quality, they proved expensive and did not
promote an improvement in expertise.
Informed by these findings, we created Critter, a mixed-

initiative system that helps experts efficiently create effective
checklists that dynamically adapt to individual project re-
quirements. Critter features three key components: Dynamic
Checklists, AutoQA, and contextual reviewer feedback. Dy-
namic Checklists allow experts to create a customized check-
list by skipping guidelines that they consider irrelevant to the
project or their design process. Related checklist items are
grouped and hierarchically nested to progressively disclose
details. For each project, a checklist is automatically pruned
to remove irrelevant guidelines (e.g., single-page website
guidelines for a multi-page website). For bespoke requests,
experts can use the Dynamic Checklists to add checklist
items they will want to complete later in the project. Crit-
ter also features an automated critique system, called Au-
toQA, which performs an automated quality assurance check
for common errors identified in the checklist (e.g., in the web
design domain, AutoQA identifies errors in content, aesthet-
ics, responsivity, and consistency). Finally, Critter allows
reviewers to provide feedback around specific design guide-
lines that are highlighted in Dynamic Checklists on future
projects to promote learning and iterative improvement.

To evaluate Critter’s effectiveness, we conducted an obser-
vational study with professional web designers creating web-
sites for 30 real-world clients at B121. In the study, designers
used Dynamic Checklists and AutoQA as part of their pro-
cess while receiving contextual feedback from B12 employ-
ees. We found that Critter was able to effectively incorporate
design guidelines into a designer’s process and consequently
create higher quality websites. Based on our findings, we
discuss broader implications of our work to other creative
domains with numerous best practices, idiosyncratic client

1https://www.b12.io/

requests, and nonlinear completion paths (e.g., designing,
writing, programming).

In summary, our contributions include:
• A novel approach, informed by a needfinding study high-
lighting gaps in traditional checklists, that combines au-
tomation with human-driven planning and reflection to
help experts navigate complex creative tasks. Specifically,
we augment checklists with a) a hierarchical structure to
mask complexity and offer navigability, b) automation to
prune and promptly check guidelines whenever possible,
and c) self-reflection through guideline-specific feedback.

• A system, Critter, that exhibits this approach with three
components: a) Dynamic Checklists that are hierarchical
and self-pruning, b) AutoQA to instantly identify common
faults, and c) Contextually presented reviewer feedback.

• An empirical, mixed-methods evaluation of web designers
using Critter to createwebsites for 30 B12 clients.We found
that the more engaged a participant was with Dynamic
Checklists and AutoQA, the fewer mistakes they made in
following design guidelines. Participants rated the AutoQA
and contextual feedback experience highly, and provided
feedback on the tradeoffs of a hierarchical display.

2 MOTIVATING EXAMPLE: WEBSITE DESIGN
To motivate our work, we present an example based on the
first-hand experience of some of the authors who work at
B12, a company that works with web design experts to create
websites for their customers. Initially, web designers creating
websites would, upon starting a new project, receive a cus-
tomer brief. This brief contained semi-structured aesthetic
preferences, functional requirements, feedback, and content
that a new customer provided by filling in a questionnaire.
After reading the brief, designers followed different paths.
Some would immediately start designing the website. Others
would jot down reminders to key customer requests in a
note-taking application of their choice. After completing a
draft of the website, designer behavior again varied. Some
designers simply submitted the draft website whereas others
would go through the list of their reminders to ensure they
hadn’t missed any details.

As a set of best practices emerged, B12 presented designers
with design guidelines in the form of a Google Spreadsheet
containing 153 distinct guidelines. These guidelines were
curated by senior designers at B12 to serve as a template
checklist for any new project. Guidelines included topics
such as website structure, copy, imagery, and aesthetics, with
major topic areas depicted in Figure 1A. The spreadsheet2
used indentation and colors to reinforce a visual hierarchy,
had a column to mark guidelines as completed, and offered
macros for pruning irrelevant guidelines.

2available at http://marcua.net/papers/chi2019-needfinding-checklist.pdf

https://www.b12.io/
http://marcua.net/papers/chi2019-needfinding-checklist.pdf

While the guidelines would change with time, most de-
signers rarely reviewed or checked off the guidelines after
their first few projects. A few designers would create a short
checklist at the start of each project and consult both the
guidelines and their checklist before submitting a draft web-
site for review. However, it was common for many designers
to do neither of these. While designers provided expertise
and kept key customer requests in their memory, they would
still miss explicit customer preferences or B12 design guide-
lines. This poor adherence resulted in customer frustration,
and researchers at B12 sought a system to better present
guidelines, assure quality, and capture feedback.

3 RELATEDWORK
Checklists and Todo lists
Checklists have been shown to provide multiple benefits,
including reminding users of critical steps, creating consis-
tency, enforcing regulation of policies, and offering a frame-
work for evaluation [37]. The primary purpose of many
checklists is essentially quality assurance through error re-
duction and guideline adherence [13]. Checklist usage varies
considerably by domain. For example, in the aviation indus-
try, checklists are standardized and compulsory [7], and com-
pletion of checklists from memory is considered a protocol
violation [17]. In contrast, design guidelines are self-imposed
and fungible (e.g., it is common for designs to hold aesthetics
and structure in tension), reinforcing prior work that empha-
sizes the non-linearity of complex work [33]. In Critter, the
checklists are dynamic and adapt to project requirements and
prior experience. Additionally, we ask the experts to use the
checklists at specificity level they see fit in their workflow.

With time, checklists have been digitized, showing advan-
tages over traditional media. For example, the Boeing 777
Electronic Checklist, developed in the early 1990s, decreased
errors by an additional 46% as compared to paper-based
checklists alone [5]. Critter builds on this research by adding
human-computer interactions like self-pruning and toggling
that afford dynamicity to the checklists.
Design guidelines
Design guidelines are sets of rules designers should follow to
ensure that their design artifacts are up to standards. Design
guidelines are widely developed and applied in various fields
such as user interface design [14, 21, 24], web design [27], in-
terior design [29], and software development [44]. They can
ensure the quality of design products and reduce stress of the
designers [24]. Some design guidelines are products of ex-
pert judgement, common sense, and practical experience [6]
while others are derived from more rigorous testing [27].

However, design guidelines alone are not always effective.
While unclear guidelines discourage designer usage [42],
long guidelinesmake it difficult to find relevant guidelines [24,

30]. Further, new design guidelines that differ from design-
ers’ previous experience are not effective even when the
designers are motivated to follow the new guidelines [43].
Prior work explores various approaches to make design

guidelines more effective. One approach involves integrating
the guidelines to the design tools by detecting or preventing
deviations from guidelines. For example, Merrell et al. imple-
mented a system that proposes alternatives that comply with
the guidelines [29]. With the guidelines embedded in the sys-
tem, the designers do not have to double-check them, reduc-
ing the error in interpretation. This approach, however, only
works well with computable guidelines and is less flexible
because the guidelines are embedded tightly into the system.
A different approach makes it easy to find relevant guidelines
from a collection by reorganizing them [27] or making them
searchable [21]. This approach helps designers save time and
mental effort in locating relevant guidelines. Another ap-
proach adopts examples to clarify ambiguous guidelines [21].
In Critter, we use AutoQA to automatically identify deviation
from guidelines, Dynamic Checklist to automatically prune
irrelevant guidelines, and contextual reviewer-provided feed-
back to reminds the designers of guidelines that they missed.
Finally, a hierarchical checklist structure affords progressive
disclosure for non-linear workflows.

Feedback
Expert feedback is important in any job. It helps its recipients
to grow their knowledge [18], learn about best practices [22],
produce better results [8], and avoid mistakes in future [16].
It allows the recipients to reflect on their performance and
identify their strengths andweaknesses [46]. A related thread
of work considers how to provide effective feedback, espe-
cially to help novices. In general, good feedback is specific,
actionable, and contains an explanation [31]. Kulkarni et al.
used examples as feedback to improve creative work [25].
Yuan et al. used rubrics to structure design feedback [47].
However, in semi-structured tasks, human experts are sus-
ceptible to judgment errors [40], suggesting opportunities
for mixed-initiative support tools. Specifically, experts like
designers have a memory capacity and can forget a guideline
while reviewing the work. Critter addresses this issue by
using design guidelines as rubrics, ensuring consistent feed-
back supported by direct and actionable design guidelines.

Automated quality assurance
An automated critique system or quality assurance checker
scans the work submitted by the user for possible violations
of design guidelines in a given field [10]. Automated quality
assurance is a common practice in domains ranging from
structured tasks like manufacturing [15] and medical device
engineering [11] to creative tasks like writing [45], software

development [9], and design [10]. Embedding such auto-
mated critics in work practice can help designers learn how
to identify and solve problematic situations early in the de-
sign process [10]. In design, trust plays a critical role in the
effectiveness of such systems. For example, a study found
that designers rated a critique tool as valuable, provided that
they feel they are in control and the tool indicates the sever-
ity of the detected error [28]. The automated critic in Critter,
AutoQA, helps designers to catch errors based on design
guidelines. In this paper, we study the relative benefits of
automated critique, self-review, and reviewer feedback.

4 NEEDFINDING STUDY
To understand how designers used existing quality assurance
techniques — a spreadsheet-based checklist discussed in Sec-
tion 2, an early prototype of AutoQA, and reviewer-provided
feedback — we conducted a needfinding study in which we
shadowed four web designers at B12.We observed their work
on one website as the designers shared their screens with us
and talked aloud about their design process. We also inter-
viewed designers, asking them questions before and after the
shadowing session. The interview focused on questions such
as “What’s the main motivation for not using the current
checklist?”, “When do you use automated quality checks?”,
“What are your thoughts on the feedback you receive from
reviewers?” Each interview and shadow session was video-
recorded and lasted approximately 3–4 hours.

Challenges and drawbacks
Our study uncovered some drawbacks of using traditional
checklists like the spreadsheet-based version discussed in
Section 2. We saw that projects had specific requirements
that took priority even if they conflicted with some design
guidelines. For example, “I’m a sole proprietor, but use ‘we’
in the copy” was a customer-specific requirement that con-
flicted with the design guideline “If the customer is a sole
proprietor, do not use ‘we’ in the copy.” Existing checklists
do not address such diverse customer needs. We also saw
that projects varied in complexity. For example, some cus-
tomers wanted designers to focus only on content, while
others wanted bespoke aesthetics for a multi-page website.
As with projects, designers also had diverse workflows.

Traditional checklists, on the other hand, imply highly con-
strained workflows. Indeed, sometimes a designer may have
different workflows for different projects due to project-
specific requirements. For example, one designer said, “I
will focus on aesthetics first since the customer was particu-
lar about them.” Overall, our needfinding study identified a
need for dynamicity that arose from the rapidly changing,
diverse, and unpredictable nature of client needs.

We also observed challenges unrelated to dynamicity. We
learned that designers who did not like to use the provided

checklist often overestimated their capacity to remember
customer-specific details and internalize the guidelines. These
designers also acknowledged forgetting a few guidelines.

We also found that beyond technology, designers most de-
sired and appreciated reviewer or peer feedback. Designers
reported finding feedback useful because it helped them learn
from their mistakes. They also felt that it could be frustrat-
ing if the reviewers do not review the project requirements
before providing feedback. When asked about automated
feedback systems, designers reported that an early version
of AutoQA was unnecessary and raised unreasonable errors.
Moreover, the designers strongly suggested that they favored
human input on their work above generic design guidelines
or algorithmic QA.

We distill these findings into the following challenges:
C1: Each project has specific requirements that must be

noted and adhered to.
C2: Designers vary the order in which they complete a

checklist depending on customer priorities and their
areas of expertise.

C3: Only a subset of the design guidelines apply to a project.
C4: Designers overestimate their capacity to remember

project-specific details and design guidelines.
C5: Designers appreciate high-quality human feedback.

5 CRITTER SYSTEM DESCRIPTION
We built Critter with the aim of addressing the challenges
(C1–C5) presented in Section 4, and now provide details on
how each of Critter’s component addresses the challenges,
along with implementation details.

Dynamic checklists
Dynamic Checklists address challenges C1–C3 by provid-
ing dynamicity, incorporating the designer’s work history,
unique client needs, and customized templates to help ex-
perts focus on the most important guidelines for a project.
We built Dynamic Checklists as an extension of the open
source Orchestra project [2], a platform for managing flash
teams [34] collaborating on creative and analytical projects.

Interface details. TheDynamic Checklists interface (Figure 1A)
allows experts to manage checklist items called todos. An
expert can add individual todos related to this project by writ-
ing its details and clicking “Add todo” (addresses C1). Experts
can also add todos from a template by clicking “Add todos
from a template.” A template includes all relevant guidelines
and can be applied to any project.

A left column contains todos the expert is responsible for
completing. In Figure 1A, a designer has added a “Migrate
photos...” todo to the top of their list. They have also added
the “Launch design checklist,” a collection of 153 nested to-
dos that cover new website design guidelines. As an expert

A

C D

B

Figure 1: Critter components (HTML/CSS edited slightly for presentation): (A) Dynamic Checklists (B) AutoQA, with warnings
about potential issues in the context of the B12 website building experience. (C) Checklist item-specific feedback for a project
alongside feedback on recent relevant projects. (D) Reviewer interface, for reviewers to provide item-specific feedback.

works through a dynamic checklist, they can check off items
in any order, or skip irrelevant items. Checklists are hierar-
chical, so experts can also choose to drill down to any level
of specificity. For example, experts seasoned in information
architecture can read less detail on “Website structure” while
focusing on “Content” (addresses C2).

Prunable and self-pruning checklist templates. Checklist tem-
plates like the "Launch design checklist" in Figure 1A repre-
sent all design guidelines, but only a part of this template
may apply to a given project. Dynamic Checklists offer a
mixed-initiative system for pruning the irrelevant todos from
these checklist templates (addresses C3).

First, the Dynamic Checklist analyzes customers’ request
and automatically skips irrelevant todos and their children.
For example, the design guidelines cover for both single-page
andmulti-page websites. If the customer specifically requests
a multi-page website, the system automatically skips irrele-
vant todos that are specific a single-page website project. In
Figure 1A, the “Apply multi-page...” todos remain in the left
column, whereas the “Apply single-page...” todos have been
skipped automatically based on customer requirements.

Second, after a designer adds a checklist template, they can
further identify irrelevant todos that were not automatically
detected as “[not relevant]”, moving a todo and its children to
the right "Skipped todo items" column. This mixed-initiative
approach aims to reduce a users’ mental load so that they
can focus on tasks that require human judgment [49].

AutoQA
AutoQA (Figure 1B) is an interface embedded in B12’s browser-
based website editor. When designers run AutoQA, they
receive a report of the errors it detects in their project, iden-
tifying common aspects of the design guidelines for which
experts overestimated their expertise (addresses C4). Once
AutoQA identifies these potential issues, they are serialized
to the AutoQA frontend as shown in Figure 1B. A designer
is presented with the AutoQA issues (10 in the figure) and,
upon clicking on an issue, is taken to the website editor
screen in which they can address the issue.

There are 15 distinct AutoQA checkers, each of which flags
multiple issues. Grammar checkers ensure proper spelling
and grammar. Placeholder checkers ensure customer-provided
content is preferred to placeholder content. Image check-
ers validate that images are not blurry, but also are not so
large that they slow downloads. Consistency, layout, and
text length checkers ensure collections (e.g., products) are
treated with visual consistency and proper grid alignment.
Finally, analytics, versioning, broken link, proper homepage,
SEO, social link, and contact information checkers ensure
that various specific modules are properly configured.

AutoQA checkers are Python functions that access an in-
termediate representation of a website’s structure, aesthetics,
and content. Checkers also scan a structured client brief,
which customers provide by filling out a form that includes
desired structure and aesthetics alongside existing content.
For example, the placeholder checker ensures that if the cus-
tomer has provided product descriptions in their client brief,

the website’s content does not include more generic place-
holder descriptions in the product section. AutoQA is limited
to guidelines for which structured information is available.
For example, AutoQA cannot be used to enforce free-text
customer feedback like, “I don’t care for the hero image.”

Contextual reviewer-provided feedback
The Dynamic Checklists interface allows reviewers to pro-
vide human feedback on other experts’ projects. The design
guidelines serve as a rubric for feedback [47], with each piece
of unstructured feedback (e.g., “The Gallery hero image on
the home . . . ”) linked to the relevant item in the checklist hier-
archy (e.g., “Make sure the website looks good responsively
. . . ”). The interface offers reviewers a structured environ-
ment to provide the feedback for which experts expressed a
preference (addresses C5) as shown in Figure 1D.
To promote a dialogue via feedback, Critter allows the

reviewers to easily copy and send this feedback in markdown
format along with a hyperlink to the Dynamic Checklist with
item-specific feedback as depicted in Figure 1C. To further
facilitate learning, the interface also displays the feedback an
expert received on previous projects as a recommended todo.
These recommended todos are highlighted in red along with
the feedback (see Figure 1C). This allows an expert to keep
an eye out for the mistakes they tend to make in practice.
In aggregate, AutoQA and contextual reviewer-provided

feedback serve a more holistic purpose [10, 32]. When ex-
perts repeatedly encounter the same set of AutoQA errors
or human feedback in particular areas of a checklist, the
encounters serve as a reminder for experts to dedicate more
attention to these areas in future projects.

6 EVALUATION
Our evaluation addressed the following research questions:

RQ1 How did designers’ use of Critter affect the quality of
their designs?

RQ2 What were designers’ attitudes toward Critter and its
three components?

Task. We selected website design as the creative task under
study. This task aligns with our motivating example while
also encompassing a range of technical and aesthetic tasks
characteristic of many creative tasks.

Participants. We recruited six designers who regularly de-
sign websites on-demand for B12’s customers, paying their
normal hourly rate for all work and research activities. All
designers worked remotely and were trained to use the
B12 website editor and Critter. Some were also part of the
initial needfinding study described in Section 4.

Procedure. We asked each designer to design five websites
for actual B12 clients. The clients were generally small- and

medium-sized businesses (SMBs), and their requirements
generally ranged from 2–7 hours of design work, option-
ally requiring copywriting. For each website, the designers
created an initial checklist using the “launch design check-
list” shown in Figure 1A. The designers were allowed to add
project-specific custom checklist items in addition to the
templated items. After creating the checklist, the designers
were instructed to use Critter as they saw fit. At the end of
the design task, we asked designers to complete the checklist
item that asks them to resolve all of the AutoQA errors.

After a designer completed a website, a reviewer reviewed
their work and provided feedback via the Critter interface
within 30–40 minutes. This turnaround was fast enough to
allow the designer to consider the feedback before starting
the next website in all but one case. The reviewer was an
author of this paper with four years of experience in web
development and two years of experience in user experi-
ence (UX) design. The reviewer evaluated the websites based
on their adherence to the 153-item template checklist and
provided structured feedback as described in Section 5.
To reduce demand characteristics, after completing all

the websites, designers were asked submit an online survey
where they rated their experience with Critter on several
five-point Likert scales. The survey also asked open-ended
questions about how they used Critter and how it impacted
the quality of their work. We used the survey responses as
the basis for follow-up semi-structured interviews [38] with
each designer over video calls. All of the interviews were
audio-recorded and partially transcribed based on detailed
notes. We used a bottom-up approach to analyze the tran-
scripts, organizing them around our three components. One
of the designers opted out of the final user interview and
online survey. We thus present our results based on the 30
websites delivered by six designers, with final survey and in-
terview results based on five of the six designers’ responses.
We also instrumented Critter to record user interactions

and performed log analysis, as described in Section 7. Finally,
designers provided partial or complete screen recordings for
27 of the 30 website design sessions to supplement the log
analysis.

Limitations
One of the limitations of our study is that we do not have
quantitative data on the control condition: how did design-
ers perform with traditional flat checklists? This limits our
ability to make broader claims about the use of traditional
checklists and their impact on quality of work in creative
tasks. However, our needfinding study helped us uncover
challenges of using a traditional checklist in the context of
creative tasks, and made it clear that adherence and under-
standing of the traditional checklist was low.

Figure 2: Bar plot of mean values for user engagement measures and mistakes defined in Section 7. The y-axis represents the
designers arranged in increasing order (top to bottom) of the mean number of mistakes made by each expert.

Another limitation of our work is the study sample size.
Because we studied six professional web designers as they
created 30 websites for B12’s customers, we were limited to a
comparative study between different designers. A larger sam-
ple would allow us to perform more robust quantitative anal-
ysis and make stronger claims to generalization. However,
the rich performance data on diverse real-world websites, in-
terviews, surveys, and instrumented interaction logs enabled
us to triangulate our claims across multiple data sources.

7 RQ1: HOW DID DESIGNERS’ USE OF CRITTER
AFFECT THE QUALITY OF THEIR DESIGNS?

We report the number of mistakes per designer in Figure 2A,
and sort each subfigure in Figure 2 by the mean number of
mistakes per designer across the websites they designed. The
number of missed design guidelines proxy for the quality of
a designer’s work on a project. This follows a rich history of
using guidelines to evaluate quality in design [47] and other
domains [26].
While design guidelines may not capture all of a client’s

quality considerations, we ensured that the guidelines were
reasonably comprehensive and captured common design
mistakes. Additionally, only 8.5% of the design guidelines
call for subjective opinion like, “Is the image appropriate for
this client?” Furthermore, only 11% of mistakes correspond
to these subjective guidelines, and the designers pushed back
on reviewer judgment in only one instance. This shows that
the missed guidelines captured reasonable mistakes, and we
use this insight to identify a website with a lower number of
missed design guidelines as a higher-quality website.

The results in Figure 2 suggest that despite similar instruc-
tions, different designers designed websites of varied quality.
Across several measures of engagement with Critter (Subfig-
ures C–G), we found that the more engaged a designer was
with Dynamic Checklists, AutoQA, and reviewer feedback,
the fewer mistakes they made in following design guidelines.
Figure 2B, which provides a count of the number of websites

designed by each designer for B12 prior to the study, sug-
gests that novice designers who adhered to the system made
fewer mistakes than experienced designers who did not.

We next explore how engagement with each of the three
component of Critter affected participants’ website quality.

Dynamic checklists
Checking items off. Marking a checklist item as complete is
the most essential interaction in Dynamic Checklists. We
asked all of the designers to only check off items they have
read and addressed while designing the website.

In Figure 2C, we note that the designerswith fewer checked
off items generally made more mistakes, whereas designers
with more checked off items generally made fewer mistakes.
D1, who checked off the second largest number of items and
had the lowest average mistakes per task said, “I like that
it guides me through the whole process, making sure that I
don’t forget anything.”

Figure 3: Bar plot of the average number of missed incom-
plete/complete design guidelines. The y-axis represents the
designers arranged in increasing order (top to bottom) of the
mean number of mistakes made by each expert.

We noticed that 61% of the missed guidelines were marked
as complete by the designers. In Figure 3, we see that the
majority of these mistakes were made by designers who
had larger checked-off item counts (Figure 2C). When asked

about this oversight during the interview, one participant
(D5) mentioned having “limited time,” and identified situa-
tions in which it was “very hard to pay attention,” especially
to design guidelines that were missed rarely.

In contrast, designers with fewer completed items not only
missed some completed items, but also missed a lot of in-
complete items (see Figure 3). Some designers explained that
they felt that they were experienced enough to have the steps
memorized and did not need to explicitly check off items. In
practice, these designers appear to have overestimated their
capability to remember design guidelines for each task.

Skipping. Skipping checklist items is one of the core oper-
ations which allows Critter users to prioritize the design
guidelines that are relevant to the task. To measure the level
of user’s engagement with the skipping functionality, we
compute the ratio of the number of checklist items marked
as irrelevant to the size of their completed checklist.
In Figure 2D, we see that designers who skipped fewer

items generally made more mistakes than designers who
skipped more items. We note that 0.6% of mistakes were on
items that designers skipped as irrelevant. This shows that
designers were successfully able to prune irrelevant items,
reducing their chance of missing an item due to an oversight.

Toggling focus. The accordion-style hierarchical checklist
allows designers to switch and compartmentalize their focus
on a subset of checklist items at a time. To estimate engage-
mentwith this functionality, wemeasure the number of times
a participant toggled (expanded or collapsed) a checklist item.
The results in Figure 2E indicate that participants who

used the toggling functionality the most also delivered the
highest-quality websites. Asked to explain their toggling be-
havior, one participant (D1) said, “It was convenient because
it was logically divided and allows the designer to open up
one branch and close it when it is done.”

Drilling deep. The hierarchical nature of Dynamic Checklists
allow users to explore and drill down to the level that fits their
design process. We estimate the level of drilling interaction
by the median depth of the checked off items in the checklist.

While not plotted due to space constraints, designers who
drilled deep generally made fewer mistakes than the design-
ers who only used higher-level design guideline topics.

AutoQA
AutoQA provides near instantaneous feedback to partici-
pants. In Figure 2F, we show the percentage of tasks in which
participants eliminated all AutoQA-reported errors, a mea-
sure of engagement with AutoQA.
We note two observations from this data. First, AutoQA

had relatively high usage among designers, with all designers
eliminating all AutoQA-reported errors on the majority of

their projects. Second, we notice a slight trend in which ex-
perts with higher AutoQA engagement made fewer mistakes.

Reviewer feedback
As explained in Section 5, recommendations from reviewers
allow designers to keep an eye out for mistakes on previ-
ous tasks. When a designer deviates from a guideline, the
reviewer points out the mistake in the feedback and the
guideline gets highlighted on the designer’s next project. In
Figure 2G, we measure the percentage of recommendations
that participants adopted in their next project.

We observed strong adherence to the recommended todos:
88 out of 91 recommendations across 30 websites were suc-
cessfully applied. In three cases where participants repeated
a mistake, the designers explicitly differed from and pushed
back on reviewer judgment. Due to the strong adherence to
recommendations across all participants, we were unable to
observe its effect on mistakes based on engagement.

Usage model
In The Checklist Manifesto [13], Gawande discusses two check-
list usage patterns: 1) do-confirm, where a user can perform
(do) one or many tasks and check off (confirm) the corre-
sponding items; and 2) read-do, where a user reads (read) a
checklist item and performs (do) the corresponding task.

We found two primary usage patterns for Dynamic Check-
lists amongst participants. The primary pattern is a hybrid of
the two usage models: do-confirm-read-skip-do. In this model,
the designers finished (do) majority of the tasks, checked
(confirm) corresponding checklist items, went through (read)
the list of remaining incomplete items, actively skipped irrel-
evant items, and finished (do) relevant checklist items.
The second pattern of read-do manifested in two newer

experts to web design with B12 (D1and D4). Early in their
experience with checklists, they serially read the guidelines
and completed them (do). As they gained confidence with
the guidelines, they switched to do-confirm-read-skip-do. The
designers did not explicitly identify these models and there
is no evidence to suggest that either of the two models is
better than the other in terms of the designer’s quality of
work. The designers reported that they chose to switch to
do-confirm-read-skip-do model because it allowed them to
design and cover majority of the checklist items from their
working memory without switching focus to the checklist.

8 RQ2: WHATWERE DESIGNERS’ ATTITUDES
TOWARD CRITTER AND ITS THREE
COMPONENTS?

Overall experience
As depicted in Figure 4, Critter received a moderately good
overall experience rating of 3.4 on a 5-point scale where 5 is

an excellent experience and 1 is a poor experience. D2 sum-
marized, “It is a helpful reminder of things that can easily
get lost in all that has to be done to build a website.”

Figure 4: Bar plot of the average rating given by the design-
ers on a five-point scale where 1 represents poor and 5 rep-
resents excellent user experience.

Dynamic checklists
Designers reported that they liked the idea of automatically
skipping irrelevant checklist items (mean rating = 3.4) from
their checklist as it saves time. As described in Section 5, Crit-
ter automatically pruned 20.4% of checklist items for each
project on average (std dev 5.1). D5 explained, “I thought it
was smart and worked well. In one project I reviewed these
automatically skipped items just in case, and I don’t think
there was anything there that should have been included.”
Other designers described not noticing automatically pruned
items, with D6 saying, “You are not meant to notice it any-
way.” These comments support our design goal to move
irrelevant checklist items out of focus.
Some designers reported that they liked the hierarchical

presentation of checklist items because it allowed them to
compartmentalize their focus. D1 explained, “I think they
are logical and help concentrate on one aspect of the website
at a time. It was convenient because it was logically divided
and allows the designer to open up one branch and close it
when it is done.” They found the hierarchical format easier to
use than the original flat list of checklist items, which were
perceived as hard to navigate through and overwhelming.
However, other designers were less enthusiastic about

the hierarchical checklists. One designer (D6) felt that it did
not fit into their design flow and felt like a chore. D5 main-
tained their stance that, as an experienced designer, they did
not need to use the thorough checklist and spend time on
moving out irrelevant items from their checklist. Instead,
D5 expressed the desire to use a reusable, shorter cheatsheet
checklist that they can update based on reviewer feedback.
Furthermore, designers unanimously reported readability is-
sues with hierarchical checklists and therefore rated it poorly

in comparison to other components (mean = 2.8). They sug-
gested different fonts, borders, or color schemes to more
clearly delineate different sections of the hierarchical view.

AutoQA
Four out of five designers rated the AutoQA experience as
excellent (mean rating = 4.6) and felt that it improved the
quality of their work. Designers reported two key benefits
of using AutoQA. First, they felt it helped them catch errors
they would miss otherwise. D4 noted, “I look forward to
it each time. It makes me accountable.” Second, they felt
AutoQA also acted a learning tool for understanding B12’s
design guidelines. In D1’s words: “Now I understand what
kind of mistakes I can make. It helped me learn more about
my design process. Now I try to make sure I don’t repeat
AutoQA errors before running AutoQA.”

Reviewer feedback and recommendations
All of the designers expressed appreciation for the human re-
viewer’s feedback (mean rating = 4.4) as it helped them learn
about B12’s expectations and improve their design process.
D1 said, “It actually helped me to better understand some
todo items and and what results are expected.” Designers also
liked the fact that the feedback appeared on their checklist,
helping them to understand the approach the reviewer took
to give feedback. Given the hierarchical nature of the check-
list, the feedback next to the checklist item not only helped
them identify what needed to fixed, but also the general area
in their design process that needs attention.
Designers also scored the automatically recommended

todo items from previous projects highly in the survey (mean
= 4.0), but were more reserved in their interview comments.
Most designers did not feel that it directly impacted the qual-
ity of their work. However, all of them acknowledged that
highlighting the todos in red and attaching reviewer feedback
caught their attention. D1 felt that it indirectly prevented
mistakes, saying, “It makes me pay more attention to the
particular todo items so that I don’t make the same mistakes
again”. Some designers also acknowledged its potential as a
learning tool. D5 said, “It would be an issue you were strug-
gling with and by showing up, it reminds you to work on it”.

9 DISCUSSION AND CONCLUSION
In this paper, we argue that Critter augments creative work
through Dynamic Checklists, AutoQA, and contextual re-
viewer feedback. We found that the more engaged a designer
was with Critter’s self-pruning hierarchical checklists and
AutoQA, the fewer mistakes they made in following detailed
design guidelines. We noticed that novice designers who ad-
hered to the system made fewer mistakes than experienced
designers who didn’t. Survey and interview data suggest
that the designers generally liked Critter (mean rating = 3.4)

and found it to be a useful guidance tool. We now discuss
some practical implications for systems that aim to augment
creative work and speak to the generalizability of Critter.

Implications for practice
A diversity of approaches. Systems that aim to support high-
quality creative work should include more than one way to
ensure the quality. To handle the different forms of mistakes
experts might make across projects, Critter uses complemen-
tary quality assurance techniques like Dynamic Checklists
and AutoQA to eliminate these mistakes. The various com-
ponents of Critter address various scalability issues with
feedback. At one extreme, AutoQA and automatic pruning
offer instantaneous feedback and review scalability, but are
limited to computable guidelines and requires subject matter-
specific automation. At the other extreme, Dynamic Check-
lists that embed reviewer feedback cover the long tail of
guidelines and quality assurance without the implementa-
tion challenges, but lack the immediacy of automation and
are susceptible to errors inherent to human judgment [40].
Notably, experts identified each of Dynamic Checklists, Au-
toQA, and reviewer feedback as useful learning tools.

Automated critics are effective when accurate. Corroborat-
ing prior work [13], automated critics like AutoQA should
only report high-confidence errors transparently identifying
doubt in errors. While participants trusted and appreciated
reviewer feedback, they quickly grew suspicious of auto-
mated errors with high false positives in early prototypes.
After we reduced the AutoQA false positive rate, participants’
opinion changed, and the majority rated their experience
with AutoQA as excellent.

Design guidelines as rubrics lead to learning and better work.
Guideline-specific feedback and automated quality checks
helped improve designers’ capacity to self-reflect using a
checklist. This finding corroborates prior work which shows
that utilizing specific criteria as a rubric for self-assessment
has a learning effect [8]. Similarly, we found that by resolving
errors reported by AutoQA, experts felt more confident going
through the checklist, with some experts expressing a better
understanding of the process. Still, guideline-specific feed-
back and AutoQA can only assist self-reflection, whereas the
designers’ ability to learn from self-reflection also depends
upon other factors like experience and motivation [36].

Hierarchical checklists support task non-linearity and varied
expertise. The hierarchy of Dynamic Checklists affords both
a broad and deep exploration that is ideal for non-linear
tasks like writing, poster design, or filmmaking. Hierarchical
checklist organization also allows experts to stay at a differ-
ent level of granularity than novices. During our needfinding
study, we learned that web designers did not like a traditional

flat checklist because it did not align with their process. In
larger projects, they found themselves scrolling the checklist
multiple times to revisit different parts of the checklist to ex-
plore various subtasks. A hierarchical view facilitated a quick
scan with deeper exploration into the relevant area of focus.

Alternative design opportunities
Critter asks experts to build a checklist by pruning the tem-
plate checklist down to relevant items in a top-down fash-
ion. An alternative design could allow the experts to build
their checklists from scratch by adding relevant items in a
bottom-up fashion instead of skipping them. We selected a
top-down approach to enable experts with less experience in
the guidelines to explore and internalize them with time. For
experts who have already internalized most of the checklist
and do not want to spend time on removing irrelevant items,
a bottom-up approach that enables them to add relevant
items might fit their workflows better. Designing a dynamic
system that supports such interactions while ensuring the
adherence to the guidelines is an interesting future direction.

Generalization to other domains
At their core, the design guidelines, automated checks, and
reviewer feedback from our motivating example have analo-
gies in many creative fields. The web design guidelines in
this paper are akin to written style guides [12, 39] (e.g., “use
the oxford comma”) or programming style guides [1, 44] (e.g.,
“Class names should be nouns in UpperCamelCase”). Simi-
larly, automated systems like Grammarly [3] for writing or
linters [23] for programming play a similar role to AutoQA.
Finally, reviewer feedback can take the form of an editor for
writing or code review for programming.

With these analogs in mind, one can imagine generalizing
Critter to other creative fields with numerous guidelines, id-
iosyncratic client requests, and nonlinear completion paths
like designing, writing, programming. For example, before
submitting a code review, a software engineer might be pre-
sented with a hierarchically organized style guide for their
programming language that has been pruned to relevant
aspects of the task, checking off key areas they have com-
pleted. If the engineer has received code review feedback on
certain aspects of the style guide in the past, those areas can
be recommended for deeper inspection. Before submitting
code for review, the engineer must ensure their code free of
linter errors. Finally, a code review can enforce quality while
informing future tasks. As the programmer internalizes the
checklist, they can inspect it at coarser levels of granularity.

With Critter, we have showcased that creativity can be aug-
mented by structure. While this work warrants more explo-
ration, we believe Dynamic Checklists, AutoQA, and contex-
tual reviewer feedback to be part of a brighter future of work.

10 ACKNOWLEDGEMENTS
We’re grateful to B12’s design experts and our B12 peers. This
research was supported by NIH grant 1UH2CA203768-01.

REFERENCES
[1] 2009. Google Java Style Guide. https://google.github.io/styleguide/

javaguide.html
[2] 2015. Orchestra. http://orchestra.b12.io/
[3] 2015. Write your best with Grammarly. https://www.grammarly.com/
[4] Jochen Bergs, Johan Hellings, Irina Cleemput, Ö Zurel, Vera De Troyer,

Monique Van Hiel, J-L Demeere, Donald Claeys, and Dominique Vandi-
jck. 2014. Systematic review and meta-analysis of the effect of the
World Health Organization surgical safety checklist on postoperative
complications. British Journal of Surgery 101, 3 (2014), 150–158.

[5] Daniel Boorman. 2001. Today’s electronic checklists reduce likelihood
of crew errors and help prevent mishaps. ICAO Journal (2001).

[6] C Marlin Brown. 1999. Human-computer interface design guidelines.
Intellect Books.

[7] Asaf Degani and Earl L Wiener. 1991. Human factors of flight-deck
checklists: the normal checklist. (1991).

[8] Steven Dow, Anand Kulkarni, Scott Klemmer, and Björn Hartmann.
2012. Shepherding the crowd yields better work. In Proceedings of the
ACM 2012 conference on Computer Supported Cooperative Work. ACM,
1013–1022.

[9] Elfriede Dustin, Jeff Rashka, and John Paul. 1999. Automated software
testing: introduction, management, and performance. Addison-Wesley
Professional.

[10] Gerhard Fischer, Kumiyo Nakakoji, Jonathan Ostwald, Gerry Stahl,
and Tamara Sumner. 1993. Embedding critics in design environments.
The knowledge engineering review 8, 4 (1993), 285–307.

[11] Werner Funk, Vera Dammann, and Gerhild Donnevert. 2007. Quality
assurance in analytical chemistry: applications in environmental, food
and materials analysis, biotechnology, and medical engineering. John
Wiley & Sons.

[12] Jose L Galvan and Melisa C Galvan. 2017. Writing literature reviews: A
guide for students of the social and behavioral sciences. Routledge.

[13] Atul Gawande. 2010. Checklist manifesto, the (HB). Penguin Books
India.

[14] Jun Gong, Peter Tarasewich, et al. 2004. Guidelines for handheld
mobile device interface design. In Proceedings of DSI 2004 Annual
Meeting. 3751–3756.

[15] Andrew Grochowski, Debashis Bhattacharya, TR Viswanathan, and
Ken Laker. 1997. Integrated circuit testing for quality assurance in
manufacturing: history, current status, and future trends. IEEE Trans-
actions on Circuits and Systems II: Analog and Digital Signal Processing
44, 8 (1997), 610–633.

[16] Daniel Haas, Jason Ansel, Lydia Gu, and AdamMarcus. 2015. Argonaut:
Macrotask Crowdsourcing for Complex Data Processing. Proc. VLDB
Endow. 8, 12 (Aug. 2015), 1642–1653. https://doi.org/10.14778/2824032.
2824062

[17] Brigette M Hales and Peter J Pronovost. 2006. The checklist – a tool for
error management and performance improvement. Journal of critical
care 21, 3 (2006), 231–235.

[18] John Hattie and Helen Timperley. 2007. The power of feedback. Review
of educational research 77, 1 (2007), 81–112.

[19] Alex B Haynes, Thomas G Weiser, William R Berry, Stuart R Lipsitz,
Abdel-Hadi S Breizat, E Patchen Dellinger, Teodoro Herbosa, Sudhir
Joseph, Pascience L Kibatala, Marie Carmela M Lapitan, et al. 2009. A
surgical safety checklist to reduce morbidity and mortality in a global
population. New England Journal of Medicine 360, 5 (2009), 491–499.

[20] Robert L Helmreich. 2000. On errormanagement: lessons from aviation.
Bmj 320, 7237 (2000), 781–785.

[21] Scott Henninger, Kyle Haynes, and Michael W Reith. 1995. A frame-
work for developing experience-based usability guidelines. In Proceed-
ings of the 1st conference on Designing interactive systems: processes,
practices, methods, & techniques. ACM, 43–53.

[22] Mariana G Hewson and Margaret L Little. 1998. Giving feedback in
medical education: verification of recommended techniques. Journal
of general internal medicine 13, 2 (1998), 111–116.

[23] Stephen C Johnson. 1977. Lint, a C program checker. Citeseer.
[24] Huhn Kim. 2010. Effective organization of design guidelines reflect-

ing designer’s design strategies. International Journal of Industrial
Ergonomics 40, 6 (2010), 669–688.

[25] Chinmay Kulkarni, Steven P Dow, and Scott R Klemmer. 2014. Early
and repeated exposure to examples improves creative work. In Design
thinking research. Springer, 49–62.

[26] Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia, Kathryn
Papadopoulos, Justin Cheng, Daphne Koller, and Scott R Klemmer. 2013.
Peer and self assessment in massive online classes. ACM Transactions
on Computer-Human Interaction (TOCHI) 20, 6 (2013), 33.

[27] Sri Kurniawan and Panayiotis Zaphiris. 2005. derived web design
guidelines for older people. In Proceedings of the 7th international ACM
SIGACCESS conference on Computers and accessibility. ACM, 129–135.

[28] Jonas Löwgren and Ulrika Laurén. 1993. Supporting the use of guide-
lines and style guides in professional user interface design. Interact-
ing with Computers 5, 4 (1993), 385 – 396. https://doi.org/10.1016/
0953-5438(93)90003-C

[29] Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and
Vladlen Koltun. 2011. Interactive furniture layout using interior design
guidelines. In ACM transactions on graphics (TOG), Vol. 30. ACM, 87.

[30] Jane N Mosier and Sidney L Smith. 1986. Application of guidelines for
designing user interface software. Behaviour & information technology
5, 1 (1986), 39–46.

[31] Tricia J Ngoon, C Ailie Fraser, Ariel SWeingarten, Mira Dontcheva, and
Scott Klemmer. 2018. Interactive Guidance Techniques for Improving
Creative Feedback. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, 55.

[32] Henry Petroski. 1985. To engineer is human: The role of failure in
successful design. St Martins Press.

[33] Daniela Retelny, Michael S Bernstein, and Melissa A Valentine. 2017.
No Workflow Can Ever Be Enough: How Crowdsourcing Workflows
Constrain ComplexWork. Proceedings of the ACM on Human-Computer
Interaction 1, 2 (2017), 23. https://doi.org/10.1145/3134724

[34] Daniela Retelny, Sébastien Robaszkiewicz, Alexandra To, Walter S
Lasecki, Jay Patel, Negar Rahmati, Tulsee Doshi, Melissa Valentine,
and Michael S Bernstein. 2014. Expert crowdsourcing with flash teams.
In Proceedings of the 27th annual ACM symposium on User interface
software and technology. ACM, 75–85.

[35] Dominique L Scapin. 1990. Organizing human factors knowledge
for the evaluation and design of interfaces. International Journal of
Human-Computer Interaction 2, 3 (1990), 203–229.

[36] Donald A Schön. 2017. The reflective practitioner: How professionals
think in action. Routledge.

[37] Michael Scriven. 2000. The logic andmethodology of checklists. (2000).
[38] Irving Seidman. 2013. Interviewing as qualitative research: A guide for

researchers in education and the social sciences. Teachers college press.
[39] Mary Shaw. 2003. Writing good software engineering research papers.

In Software Engineering, 2003. Proceedings. 25th International Conference
on. IEEE, 726–736.

[40] Barry G Silverman. 1991. Expert critics: operationalizing the judge-
ment/decisionmaking literature as a theory of “bugs” and repair strate-
gies. Knowledge Acquisition 3, 2 (1991), 175–214.

https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html
http://orchestra.b12.io/
https://www.grammarly.com/
https://doi.org/10.14778/2824032.2824062
https://doi.org/10.14778/2824032.2824062
https://doi.org/10.1016/0953-5438(93)90003-C
https://doi.org/10.1016/0953-5438(93)90003-C
https://doi.org/10.1145/3134724

[41] Michael Terry and Elizabeth D Mynatt. 2002. Recognizing creative
needs in user interface design. In Proceedings of the 4th conference on
Creativity & cognition. ACM, 38–44.

[42] Linda Tetzlaff and David R Schwartz. 1991. The use of guidelines in
interface design. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 329–333.

[43] Henrik Thovtrup and Jakob Nielsen. 1991. Assessing the usability of
a user interface standard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 335–341.

[44] Guido van Rossum, Barry Warsaw, and Nick Coghlan. 2001. PEP 8:
style guide for Python code. Python. org (2001).

[45] Mark Warschauer and Paige Ware. 2006. Automated writing evalu-
ation: Defining the classroom research agenda. Language teaching
research 10, 2 (2006), 157–180.

[46] Jane Westberg and Hilliard Jason. 2001. Fostering reflection and provid-
ing feedback: Helping others learn from experience. Springer Publishing
Company.

[47] Alvin Yuan, Kurt Luther, Markus Krause, Sophie Isabel Vennix,
Steven P Dow, and Bjorn Hartmann. 2016. Almost an Expert: The Ef-
fects of Rubrics and Expertise on Perceived Value of Crowdsourced De-
sign Critiques. In Proceedings of the 19th ACM Conference on Computer-
Supported Cooperative Work & Social Computing (CSCW ’16). ACM,
New York, NY, USA, 1005–1017. https://doi.org/10.1145/2818048.
2819953

[48] Myung Hwan Yun, Heecheon You, Wooyeun Geum, and Dongjoon
Kong. 2004. Affective evaluation of vehicle interior craftsmanship:
systematic checklists for touch/feel quality of surface-covering ma-
terial. In Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, Vol. 48. SAGE Publications Sage CA: Los Angeles, CA,
971–975.

[49] Haoqi Zhang, Edith Law, Rob Miller, Krzysztof Gajos, David Parkes,
and Eric Horvitz. 2012. Human computation tasks with global con-
straints. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 217–226.

https://doi.org/10.1145/2818048.2819953
https://doi.org/10.1145/2818048.2819953

	Abstract
	1 Introduction
	2 Motivating example: Website design
	3 Related Work
	Checklists and Todo lists
	Design guidelines
	Feedback
	Automated quality assurance

	4 Needfinding study
	Challenges and drawbacks

	5 Critter system description
	Dynamic checklists
	AutoQA
	Contextual reviewer-provided feedback

	6 Evaluation
	Limitations

	7 RQ1: How did designers' use of Critter affect the quality of their designs?
	Dynamic checklists
	AutoQA
	Reviewer feedback
	Usage model

	8 RQ2: What were designers' attitudes toward Critter and its three components?
	Overall experience
	Dynamic checklists
	AutoQA
	Reviewer feedback and recommendations

	9 Discussion and Conclusion
	Implications for practice
	Alternative design opportunities
	Generalization to other domains

	10 Acknowledgements
	References

